This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuun | |- ( ( inl " A ) u. ( inr " B ) ) = ( A |_| B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun | |- ( x e. ( ( inl " A ) u. ( inr " B ) ) <-> ( x e. ( inl " A ) \/ x e. ( inr " B ) ) ) |
|
| 2 | djulf1o | |- inl : _V -1-1-onto-> ( { (/) } X. _V ) |
|
| 3 | f1ofn | |- ( inl : _V -1-1-onto-> ( { (/) } X. _V ) -> inl Fn _V ) |
|
| 4 | 2 3 | ax-mp | |- inl Fn _V |
| 5 | ssv | |- A C_ _V |
|
| 6 | fvelimab | |- ( ( inl Fn _V /\ A C_ _V ) -> ( x e. ( inl " A ) <-> E. u e. A ( inl ` u ) = x ) ) |
|
| 7 | 4 5 6 | mp2an | |- ( x e. ( inl " A ) <-> E. u e. A ( inl ` u ) = x ) |
| 8 | 7 | biimpi | |- ( x e. ( inl " A ) -> E. u e. A ( inl ` u ) = x ) |
| 9 | simprr | |- ( ( x e. ( inl " A ) /\ ( u e. A /\ ( inl ` u ) = x ) ) -> ( inl ` u ) = x ) |
|
| 10 | vex | |- u e. _V |
|
| 11 | opex | |- <. (/) , u >. e. _V |
|
| 12 | opeq2 | |- ( z = u -> <. (/) , z >. = <. (/) , u >. ) |
|
| 13 | df-inl | |- inl = ( z e. _V |-> <. (/) , z >. ) |
|
| 14 | 12 13 | fvmptg | |- ( ( u e. _V /\ <. (/) , u >. e. _V ) -> ( inl ` u ) = <. (/) , u >. ) |
| 15 | 10 11 14 | mp2an | |- ( inl ` u ) = <. (/) , u >. |
| 16 | 0ex | |- (/) e. _V |
|
| 17 | 16 | snid | |- (/) e. { (/) } |
| 18 | opelxpi | |- ( ( (/) e. { (/) } /\ u e. A ) -> <. (/) , u >. e. ( { (/) } X. A ) ) |
|
| 19 | 17 18 | mpan | |- ( u e. A -> <. (/) , u >. e. ( { (/) } X. A ) ) |
| 20 | 19 | ad2antrl | |- ( ( x e. ( inl " A ) /\ ( u e. A /\ ( inl ` u ) = x ) ) -> <. (/) , u >. e. ( { (/) } X. A ) ) |
| 21 | 15 20 | eqeltrid | |- ( ( x e. ( inl " A ) /\ ( u e. A /\ ( inl ` u ) = x ) ) -> ( inl ` u ) e. ( { (/) } X. A ) ) |
| 22 | 9 21 | eqeltrrd | |- ( ( x e. ( inl " A ) /\ ( u e. A /\ ( inl ` u ) = x ) ) -> x e. ( { (/) } X. A ) ) |
| 23 | 8 22 | rexlimddv | |- ( x e. ( inl " A ) -> x e. ( { (/) } X. A ) ) |
| 24 | elun1 | |- ( x e. ( { (/) } X. A ) -> x e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
|
| 25 | 23 24 | syl | |- ( x e. ( inl " A ) -> x e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 26 | df-dju | |- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
|
| 27 | 25 26 | eleqtrrdi | |- ( x e. ( inl " A ) -> x e. ( A |_| B ) ) |
| 28 | djurf1o | |- inr : _V -1-1-onto-> ( { 1o } X. _V ) |
|
| 29 | f1ofn | |- ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> inr Fn _V ) |
|
| 30 | 28 29 | ax-mp | |- inr Fn _V |
| 31 | ssv | |- B C_ _V |
|
| 32 | fvelimab | |- ( ( inr Fn _V /\ B C_ _V ) -> ( x e. ( inr " B ) <-> E. u e. B ( inr ` u ) = x ) ) |
|
| 33 | 30 31 32 | mp2an | |- ( x e. ( inr " B ) <-> E. u e. B ( inr ` u ) = x ) |
| 34 | 33 | biimpi | |- ( x e. ( inr " B ) -> E. u e. B ( inr ` u ) = x ) |
| 35 | simprr | |- ( ( x e. ( inr " B ) /\ ( u e. B /\ ( inr ` u ) = x ) ) -> ( inr ` u ) = x ) |
|
| 36 | opex | |- <. 1o , u >. e. _V |
|
| 37 | opeq2 | |- ( z = u -> <. 1o , z >. = <. 1o , u >. ) |
|
| 38 | df-inr | |- inr = ( z e. _V |-> <. 1o , z >. ) |
|
| 39 | 37 38 | fvmptg | |- ( ( u e. _V /\ <. 1o , u >. e. _V ) -> ( inr ` u ) = <. 1o , u >. ) |
| 40 | 10 36 39 | mp2an | |- ( inr ` u ) = <. 1o , u >. |
| 41 | 1oex | |- 1o e. _V |
|
| 42 | 41 | snid | |- 1o e. { 1o } |
| 43 | opelxpi | |- ( ( 1o e. { 1o } /\ u e. B ) -> <. 1o , u >. e. ( { 1o } X. B ) ) |
|
| 44 | 42 43 | mpan | |- ( u e. B -> <. 1o , u >. e. ( { 1o } X. B ) ) |
| 45 | 44 | ad2antrl | |- ( ( x e. ( inr " B ) /\ ( u e. B /\ ( inr ` u ) = x ) ) -> <. 1o , u >. e. ( { 1o } X. B ) ) |
| 46 | 40 45 | eqeltrid | |- ( ( x e. ( inr " B ) /\ ( u e. B /\ ( inr ` u ) = x ) ) -> ( inr ` u ) e. ( { 1o } X. B ) ) |
| 47 | 35 46 | eqeltrrd | |- ( ( x e. ( inr " B ) /\ ( u e. B /\ ( inr ` u ) = x ) ) -> x e. ( { 1o } X. B ) ) |
| 48 | 34 47 | rexlimddv | |- ( x e. ( inr " B ) -> x e. ( { 1o } X. B ) ) |
| 49 | elun2 | |- ( x e. ( { 1o } X. B ) -> x e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
|
| 50 | 48 49 | syl | |- ( x e. ( inr " B ) -> x e. ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 51 | 50 26 | eleqtrrdi | |- ( x e. ( inr " B ) -> x e. ( A |_| B ) ) |
| 52 | 27 51 | jaoi | |- ( ( x e. ( inl " A ) \/ x e. ( inr " B ) ) -> x e. ( A |_| B ) ) |
| 53 | 1 52 | sylbi | |- ( x e. ( ( inl " A ) u. ( inr " B ) ) -> x e. ( A |_| B ) ) |
| 54 | 53 | ssriv | |- ( ( inl " A ) u. ( inr " B ) ) C_ ( A |_| B ) |
| 55 | djur | |- ( x e. ( A |_| B ) -> ( E. y e. A x = ( inl ` y ) \/ E. y e. B x = ( inr ` y ) ) ) |
|
| 56 | vex | |- y e. _V |
|
| 57 | f1odm | |- ( inl : _V -1-1-onto-> ( { (/) } X. _V ) -> dom inl = _V ) |
|
| 58 | 2 57 | ax-mp | |- dom inl = _V |
| 59 | 56 58 | eleqtrri | |- y e. dom inl |
| 60 | simpl | |- ( ( y e. A /\ x = ( inl ` y ) ) -> y e. A ) |
|
| 61 | 13 | funmpt2 | |- Fun inl |
| 62 | funfvima | |- ( ( Fun inl /\ y e. dom inl ) -> ( y e. A -> ( inl ` y ) e. ( inl " A ) ) ) |
|
| 63 | 61 62 | mpan | |- ( y e. dom inl -> ( y e. A -> ( inl ` y ) e. ( inl " A ) ) ) |
| 64 | 59 60 63 | mpsyl | |- ( ( y e. A /\ x = ( inl ` y ) ) -> ( inl ` y ) e. ( inl " A ) ) |
| 65 | eleq1 | |- ( x = ( inl ` y ) -> ( x e. ( inl " A ) <-> ( inl ` y ) e. ( inl " A ) ) ) |
|
| 66 | 65 | adantl | |- ( ( y e. A /\ x = ( inl ` y ) ) -> ( x e. ( inl " A ) <-> ( inl ` y ) e. ( inl " A ) ) ) |
| 67 | 64 66 | mpbird | |- ( ( y e. A /\ x = ( inl ` y ) ) -> x e. ( inl " A ) ) |
| 68 | 67 | rexlimiva | |- ( E. y e. A x = ( inl ` y ) -> x e. ( inl " A ) ) |
| 69 | f1odm | |- ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> dom inr = _V ) |
|
| 70 | 28 69 | ax-mp | |- dom inr = _V |
| 71 | 56 70 | eleqtrri | |- y e. dom inr |
| 72 | simpl | |- ( ( y e. B /\ x = ( inr ` y ) ) -> y e. B ) |
|
| 73 | f1ofun | |- ( inr : _V -1-1-onto-> ( { 1o } X. _V ) -> Fun inr ) |
|
| 74 | 28 73 | ax-mp | |- Fun inr |
| 75 | funfvima | |- ( ( Fun inr /\ y e. dom inr ) -> ( y e. B -> ( inr ` y ) e. ( inr " B ) ) ) |
|
| 76 | 74 75 | mpan | |- ( y e. dom inr -> ( y e. B -> ( inr ` y ) e. ( inr " B ) ) ) |
| 77 | 71 72 76 | mpsyl | |- ( ( y e. B /\ x = ( inr ` y ) ) -> ( inr ` y ) e. ( inr " B ) ) |
| 78 | eleq1 | |- ( x = ( inr ` y ) -> ( x e. ( inr " B ) <-> ( inr ` y ) e. ( inr " B ) ) ) |
|
| 79 | 78 | adantl | |- ( ( y e. B /\ x = ( inr ` y ) ) -> ( x e. ( inr " B ) <-> ( inr ` y ) e. ( inr " B ) ) ) |
| 80 | 77 79 | mpbird | |- ( ( y e. B /\ x = ( inr ` y ) ) -> x e. ( inr " B ) ) |
| 81 | 80 | rexlimiva | |- ( E. y e. B x = ( inr ` y ) -> x e. ( inr " B ) ) |
| 82 | 68 81 | orim12i | |- ( ( E. y e. A x = ( inl ` y ) \/ E. y e. B x = ( inr ` y ) ) -> ( x e. ( inl " A ) \/ x e. ( inr " B ) ) ) |
| 83 | 55 82 | syl | |- ( x e. ( A |_| B ) -> ( x e. ( inl " A ) \/ x e. ( inr " B ) ) ) |
| 84 | 83 1 | sylibr | |- ( x e. ( A |_| B ) -> x e. ( ( inl " A ) u. ( inr " B ) ) ) |
| 85 | 84 | ssriv | |- ( A |_| B ) C_ ( ( inl " A ) u. ( inr " B ) ) |
| 86 | 54 85 | eqssi | |- ( ( inl " A ) u. ( inr " B ) ) = ( A |_| B ) |