This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuun | ⊢ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) = ( 𝐴 ⊔ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun | ⊢ ( 𝑥 ∈ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) ↔ ( 𝑥 ∈ ( inl “ 𝐴 ) ∨ 𝑥 ∈ ( inr “ 𝐵 ) ) ) | |
| 2 | djulf1o | ⊢ inl : V –1-1-onto→ ( { ∅ } × V ) | |
| 3 | f1ofn | ⊢ ( inl : V –1-1-onto→ ( { ∅ } × V ) → inl Fn V ) | |
| 4 | 2 3 | ax-mp | ⊢ inl Fn V |
| 5 | ssv | ⊢ 𝐴 ⊆ V | |
| 6 | fvelimab | ⊢ ( ( inl Fn V ∧ 𝐴 ⊆ V ) → ( 𝑥 ∈ ( inl “ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 ( inl ‘ 𝑢 ) = 𝑥 ) ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( 𝑥 ∈ ( inl “ 𝐴 ) ↔ ∃ 𝑢 ∈ 𝐴 ( inl ‘ 𝑢 ) = 𝑥 ) |
| 8 | 7 | biimpi | ⊢ ( 𝑥 ∈ ( inl “ 𝐴 ) → ∃ 𝑢 ∈ 𝐴 ( inl ‘ 𝑢 ) = 𝑥 ) |
| 9 | simprr | ⊢ ( ( 𝑥 ∈ ( inl “ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( inl ‘ 𝑢 ) = 𝑥 ) ) → ( inl ‘ 𝑢 ) = 𝑥 ) | |
| 10 | vex | ⊢ 𝑢 ∈ V | |
| 11 | opex | ⊢ 〈 ∅ , 𝑢 〉 ∈ V | |
| 12 | opeq2 | ⊢ ( 𝑧 = 𝑢 → 〈 ∅ , 𝑧 〉 = 〈 ∅ , 𝑢 〉 ) | |
| 13 | df-inl | ⊢ inl = ( 𝑧 ∈ V ↦ 〈 ∅ , 𝑧 〉 ) | |
| 14 | 12 13 | fvmptg | ⊢ ( ( 𝑢 ∈ V ∧ 〈 ∅ , 𝑢 〉 ∈ V ) → ( inl ‘ 𝑢 ) = 〈 ∅ , 𝑢 〉 ) |
| 15 | 10 11 14 | mp2an | ⊢ ( inl ‘ 𝑢 ) = 〈 ∅ , 𝑢 〉 |
| 16 | 0ex | ⊢ ∅ ∈ V | |
| 17 | 16 | snid | ⊢ ∅ ∈ { ∅ } |
| 18 | opelxpi | ⊢ ( ( ∅ ∈ { ∅ } ∧ 𝑢 ∈ 𝐴 ) → 〈 ∅ , 𝑢 〉 ∈ ( { ∅ } × 𝐴 ) ) | |
| 19 | 17 18 | mpan | ⊢ ( 𝑢 ∈ 𝐴 → 〈 ∅ , 𝑢 〉 ∈ ( { ∅ } × 𝐴 ) ) |
| 20 | 19 | ad2antrl | ⊢ ( ( 𝑥 ∈ ( inl “ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( inl ‘ 𝑢 ) = 𝑥 ) ) → 〈 ∅ , 𝑢 〉 ∈ ( { ∅ } × 𝐴 ) ) |
| 21 | 15 20 | eqeltrid | ⊢ ( ( 𝑥 ∈ ( inl “ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( inl ‘ 𝑢 ) = 𝑥 ) ) → ( inl ‘ 𝑢 ) ∈ ( { ∅ } × 𝐴 ) ) |
| 22 | 9 21 | eqeltrrd | ⊢ ( ( 𝑥 ∈ ( inl “ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ( inl ‘ 𝑢 ) = 𝑥 ) ) → 𝑥 ∈ ( { ∅ } × 𝐴 ) ) |
| 23 | 8 22 | rexlimddv | ⊢ ( 𝑥 ∈ ( inl “ 𝐴 ) → 𝑥 ∈ ( { ∅ } × 𝐴 ) ) |
| 24 | elun1 | ⊢ ( 𝑥 ∈ ( { ∅ } × 𝐴 ) → 𝑥 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝑥 ∈ ( inl “ 𝐴 ) → 𝑥 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
| 26 | df-dju | ⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) | |
| 27 | 25 26 | eleqtrrdi | ⊢ ( 𝑥 ∈ ( inl “ 𝐴 ) → 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) ) |
| 28 | djurf1o | ⊢ inr : V –1-1-onto→ ( { 1o } × V ) | |
| 29 | f1ofn | ⊢ ( inr : V –1-1-onto→ ( { 1o } × V ) → inr Fn V ) | |
| 30 | 28 29 | ax-mp | ⊢ inr Fn V |
| 31 | ssv | ⊢ 𝐵 ⊆ V | |
| 32 | fvelimab | ⊢ ( ( inr Fn V ∧ 𝐵 ⊆ V ) → ( 𝑥 ∈ ( inr “ 𝐵 ) ↔ ∃ 𝑢 ∈ 𝐵 ( inr ‘ 𝑢 ) = 𝑥 ) ) | |
| 33 | 30 31 32 | mp2an | ⊢ ( 𝑥 ∈ ( inr “ 𝐵 ) ↔ ∃ 𝑢 ∈ 𝐵 ( inr ‘ 𝑢 ) = 𝑥 ) |
| 34 | 33 | biimpi | ⊢ ( 𝑥 ∈ ( inr “ 𝐵 ) → ∃ 𝑢 ∈ 𝐵 ( inr ‘ 𝑢 ) = 𝑥 ) |
| 35 | simprr | ⊢ ( ( 𝑥 ∈ ( inr “ 𝐵 ) ∧ ( 𝑢 ∈ 𝐵 ∧ ( inr ‘ 𝑢 ) = 𝑥 ) ) → ( inr ‘ 𝑢 ) = 𝑥 ) | |
| 36 | opex | ⊢ 〈 1o , 𝑢 〉 ∈ V | |
| 37 | opeq2 | ⊢ ( 𝑧 = 𝑢 → 〈 1o , 𝑧 〉 = 〈 1o , 𝑢 〉 ) | |
| 38 | df-inr | ⊢ inr = ( 𝑧 ∈ V ↦ 〈 1o , 𝑧 〉 ) | |
| 39 | 37 38 | fvmptg | ⊢ ( ( 𝑢 ∈ V ∧ 〈 1o , 𝑢 〉 ∈ V ) → ( inr ‘ 𝑢 ) = 〈 1o , 𝑢 〉 ) |
| 40 | 10 36 39 | mp2an | ⊢ ( inr ‘ 𝑢 ) = 〈 1o , 𝑢 〉 |
| 41 | 1oex | ⊢ 1o ∈ V | |
| 42 | 41 | snid | ⊢ 1o ∈ { 1o } |
| 43 | opelxpi | ⊢ ( ( 1o ∈ { 1o } ∧ 𝑢 ∈ 𝐵 ) → 〈 1o , 𝑢 〉 ∈ ( { 1o } × 𝐵 ) ) | |
| 44 | 42 43 | mpan | ⊢ ( 𝑢 ∈ 𝐵 → 〈 1o , 𝑢 〉 ∈ ( { 1o } × 𝐵 ) ) |
| 45 | 44 | ad2antrl | ⊢ ( ( 𝑥 ∈ ( inr “ 𝐵 ) ∧ ( 𝑢 ∈ 𝐵 ∧ ( inr ‘ 𝑢 ) = 𝑥 ) ) → 〈 1o , 𝑢 〉 ∈ ( { 1o } × 𝐵 ) ) |
| 46 | 40 45 | eqeltrid | ⊢ ( ( 𝑥 ∈ ( inr “ 𝐵 ) ∧ ( 𝑢 ∈ 𝐵 ∧ ( inr ‘ 𝑢 ) = 𝑥 ) ) → ( inr ‘ 𝑢 ) ∈ ( { 1o } × 𝐵 ) ) |
| 47 | 35 46 | eqeltrrd | ⊢ ( ( 𝑥 ∈ ( inr “ 𝐵 ) ∧ ( 𝑢 ∈ 𝐵 ∧ ( inr ‘ 𝑢 ) = 𝑥 ) ) → 𝑥 ∈ ( { 1o } × 𝐵 ) ) |
| 48 | 34 47 | rexlimddv | ⊢ ( 𝑥 ∈ ( inr “ 𝐵 ) → 𝑥 ∈ ( { 1o } × 𝐵 ) ) |
| 49 | elun2 | ⊢ ( 𝑥 ∈ ( { 1o } × 𝐵 ) → 𝑥 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) | |
| 50 | 48 49 | syl | ⊢ ( 𝑥 ∈ ( inr “ 𝐵 ) → 𝑥 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ) |
| 51 | 50 26 | eleqtrrdi | ⊢ ( 𝑥 ∈ ( inr “ 𝐵 ) → 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) ) |
| 52 | 27 51 | jaoi | ⊢ ( ( 𝑥 ∈ ( inl “ 𝐴 ) ∨ 𝑥 ∈ ( inr “ 𝐵 ) ) → 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) ) |
| 53 | 1 52 | sylbi | ⊢ ( 𝑥 ∈ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) → 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) ) |
| 54 | 53 | ssriv | ⊢ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) ⊆ ( 𝐴 ⊔ 𝐵 ) |
| 55 | djur | ⊢ ( 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( inl ‘ 𝑦 ) ∨ ∃ 𝑦 ∈ 𝐵 𝑥 = ( inr ‘ 𝑦 ) ) ) | |
| 56 | vex | ⊢ 𝑦 ∈ V | |
| 57 | f1odm | ⊢ ( inl : V –1-1-onto→ ( { ∅ } × V ) → dom inl = V ) | |
| 58 | 2 57 | ax-mp | ⊢ dom inl = V |
| 59 | 56 58 | eleqtrri | ⊢ 𝑦 ∈ dom inl |
| 60 | simpl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → 𝑦 ∈ 𝐴 ) | |
| 61 | 13 | funmpt2 | ⊢ Fun inl |
| 62 | funfvima | ⊢ ( ( Fun inl ∧ 𝑦 ∈ dom inl ) → ( 𝑦 ∈ 𝐴 → ( inl ‘ 𝑦 ) ∈ ( inl “ 𝐴 ) ) ) | |
| 63 | 61 62 | mpan | ⊢ ( 𝑦 ∈ dom inl → ( 𝑦 ∈ 𝐴 → ( inl ‘ 𝑦 ) ∈ ( inl “ 𝐴 ) ) ) |
| 64 | 59 60 63 | mpsyl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → ( inl ‘ 𝑦 ) ∈ ( inl “ 𝐴 ) ) |
| 65 | eleq1 | ⊢ ( 𝑥 = ( inl ‘ 𝑦 ) → ( 𝑥 ∈ ( inl “ 𝐴 ) ↔ ( inl ‘ 𝑦 ) ∈ ( inl “ 𝐴 ) ) ) | |
| 66 | 65 | adantl | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → ( 𝑥 ∈ ( inl “ 𝐴 ) ↔ ( inl ‘ 𝑦 ) ∈ ( inl “ 𝐴 ) ) ) |
| 67 | 64 66 | mpbird | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( inl ‘ 𝑦 ) ) → 𝑥 ∈ ( inl “ 𝐴 ) ) |
| 68 | 67 | rexlimiva | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( inl ‘ 𝑦 ) → 𝑥 ∈ ( inl “ 𝐴 ) ) |
| 69 | f1odm | ⊢ ( inr : V –1-1-onto→ ( { 1o } × V ) → dom inr = V ) | |
| 70 | 28 69 | ax-mp | ⊢ dom inr = V |
| 71 | 56 70 | eleqtrri | ⊢ 𝑦 ∈ dom inr |
| 72 | simpl | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑦 ∈ 𝐵 ) | |
| 73 | f1ofun | ⊢ ( inr : V –1-1-onto→ ( { 1o } × V ) → Fun inr ) | |
| 74 | 28 73 | ax-mp | ⊢ Fun inr |
| 75 | funfvima | ⊢ ( ( Fun inr ∧ 𝑦 ∈ dom inr ) → ( 𝑦 ∈ 𝐵 → ( inr ‘ 𝑦 ) ∈ ( inr “ 𝐵 ) ) ) | |
| 76 | 74 75 | mpan | ⊢ ( 𝑦 ∈ dom inr → ( 𝑦 ∈ 𝐵 → ( inr ‘ 𝑦 ) ∈ ( inr “ 𝐵 ) ) ) |
| 77 | 71 72 76 | mpsyl | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → ( inr ‘ 𝑦 ) ∈ ( inr “ 𝐵 ) ) |
| 78 | eleq1 | ⊢ ( 𝑥 = ( inr ‘ 𝑦 ) → ( 𝑥 ∈ ( inr “ 𝐵 ) ↔ ( inr ‘ 𝑦 ) ∈ ( inr “ 𝐵 ) ) ) | |
| 79 | 78 | adantl | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → ( 𝑥 ∈ ( inr “ 𝐵 ) ↔ ( inr ‘ 𝑦 ) ∈ ( inr “ 𝐵 ) ) ) |
| 80 | 77 79 | mpbird | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 = ( inr ‘ 𝑦 ) ) → 𝑥 ∈ ( inr “ 𝐵 ) ) |
| 81 | 80 | rexlimiva | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 = ( inr ‘ 𝑦 ) → 𝑥 ∈ ( inr “ 𝐵 ) ) |
| 82 | 68 81 | orim12i | ⊢ ( ( ∃ 𝑦 ∈ 𝐴 𝑥 = ( inl ‘ 𝑦 ) ∨ ∃ 𝑦 ∈ 𝐵 𝑥 = ( inr ‘ 𝑦 ) ) → ( 𝑥 ∈ ( inl “ 𝐴 ) ∨ 𝑥 ∈ ( inr “ 𝐵 ) ) ) |
| 83 | 55 82 | syl | ⊢ ( 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) → ( 𝑥 ∈ ( inl “ 𝐴 ) ∨ 𝑥 ∈ ( inr “ 𝐵 ) ) ) |
| 84 | 83 1 | sylibr | ⊢ ( 𝑥 ∈ ( 𝐴 ⊔ 𝐵 ) → 𝑥 ∈ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) ) |
| 85 | 84 | ssriv | ⊢ ( 𝐴 ⊔ 𝐵 ) ⊆ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) |
| 86 | 54 85 | eqssi | ⊢ ( ( inl “ 𝐴 ) ∪ ( inr “ 𝐵 ) ) = ( 𝐴 ⊔ 𝐵 ) |