This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djurf1o | |- inr : _V -1-1-onto-> ( { 1o } X. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inr | |- inr = ( x e. _V |-> <. 1o , x >. ) |
|
| 2 | 1onn | |- 1o e. _om |
|
| 3 | snidg | |- ( 1o e. _om -> 1o e. { 1o } ) |
|
| 4 | 2 3 | ax-mp | |- 1o e. { 1o } |
| 5 | opelxpi | |- ( ( 1o e. { 1o } /\ x e. _V ) -> <. 1o , x >. e. ( { 1o } X. _V ) ) |
|
| 6 | 4 5 | mpan | |- ( x e. _V -> <. 1o , x >. e. ( { 1o } X. _V ) ) |
| 7 | 6 | adantl | |- ( ( T. /\ x e. _V ) -> <. 1o , x >. e. ( { 1o } X. _V ) ) |
| 8 | fvexd | |- ( ( T. /\ y e. ( { 1o } X. _V ) ) -> ( 2nd ` y ) e. _V ) |
|
| 9 | 1st2nd2 | |- ( y e. ( { 1o } X. _V ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
|
| 10 | xp1st | |- ( y e. ( { 1o } X. _V ) -> ( 1st ` y ) e. { 1o } ) |
|
| 11 | elsni | |- ( ( 1st ` y ) e. { 1o } -> ( 1st ` y ) = 1o ) |
|
| 12 | 10 11 | syl | |- ( y e. ( { 1o } X. _V ) -> ( 1st ` y ) = 1o ) |
| 13 | 12 | opeq1d | |- ( y e. ( { 1o } X. _V ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. = <. 1o , ( 2nd ` y ) >. ) |
| 14 | 9 13 | eqtrd | |- ( y e. ( { 1o } X. _V ) -> y = <. 1o , ( 2nd ` y ) >. ) |
| 15 | 14 | eqeq2d | |- ( y e. ( { 1o } X. _V ) -> ( <. 1o , x >. = y <-> <. 1o , x >. = <. 1o , ( 2nd ` y ) >. ) ) |
| 16 | eqcom | |- ( <. 1o , x >. = y <-> y = <. 1o , x >. ) |
|
| 17 | eqid | |- 1o = 1o |
|
| 18 | 1oex | |- 1o e. _V |
|
| 19 | vex | |- x e. _V |
|
| 20 | 18 19 | opth | |- ( <. 1o , x >. = <. 1o , ( 2nd ` y ) >. <-> ( 1o = 1o /\ x = ( 2nd ` y ) ) ) |
| 21 | 17 20 | mpbiran | |- ( <. 1o , x >. = <. 1o , ( 2nd ` y ) >. <-> x = ( 2nd ` y ) ) |
| 22 | 15 16 21 | 3bitr3g | |- ( y e. ( { 1o } X. _V ) -> ( y = <. 1o , x >. <-> x = ( 2nd ` y ) ) ) |
| 23 | 22 | bicomd | |- ( y e. ( { 1o } X. _V ) -> ( x = ( 2nd ` y ) <-> y = <. 1o , x >. ) ) |
| 24 | 23 | ad2antll | |- ( ( T. /\ ( x e. _V /\ y e. ( { 1o } X. _V ) ) ) -> ( x = ( 2nd ` y ) <-> y = <. 1o , x >. ) ) |
| 25 | 1 7 8 24 | f1o2d | |- ( T. -> inr : _V -1-1-onto-> ( { 1o } X. _V ) ) |
| 26 | 25 | mptru | |- inr : _V -1-1-onto-> ( { 1o } X. _V ) |