This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1stinl | |- ( X e. V -> ( 1st ` ( inl ` X ) ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl | |- inl = ( x e. _V |-> <. (/) , x >. ) |
|
| 2 | opeq2 | |- ( x = X -> <. (/) , x >. = <. (/) , X >. ) |
|
| 3 | elex | |- ( X e. V -> X e. _V ) |
|
| 4 | opex | |- <. (/) , X >. e. _V |
|
| 5 | 4 | a1i | |- ( X e. V -> <. (/) , X >. e. _V ) |
| 6 | 1 2 3 5 | fvmptd3 | |- ( X e. V -> ( inl ` X ) = <. (/) , X >. ) |
| 7 | 6 | fveq2d | |- ( X e. V -> ( 1st ` ( inl ` X ) ) = ( 1st ` <. (/) , X >. ) ) |
| 8 | 0ex | |- (/) e. _V |
|
| 9 | op1stg | |- ( ( (/) e. _V /\ X e. V ) -> ( 1st ` <. (/) , X >. ) = (/) ) |
|
| 10 | 8 9 | mpan | |- ( X e. V -> ( 1st ` <. (/) , X >. ) = (/) ) |
| 11 | 7 10 | eqtrd | |- ( X e. V -> ( 1st ` ( inl ` X ) ) = (/) ) |