This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djulf1o | |- inl : _V -1-1-onto-> ( { (/) } X. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl | |- inl = ( x e. _V |-> <. (/) , x >. ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | 2 | snid | |- (/) e. { (/) } |
| 4 | opelxpi | |- ( ( (/) e. { (/) } /\ x e. _V ) -> <. (/) , x >. e. ( { (/) } X. _V ) ) |
|
| 5 | 3 4 | mpan | |- ( x e. _V -> <. (/) , x >. e. ( { (/) } X. _V ) ) |
| 6 | 5 | adantl | |- ( ( T. /\ x e. _V ) -> <. (/) , x >. e. ( { (/) } X. _V ) ) |
| 7 | fvexd | |- ( ( T. /\ y e. ( { (/) } X. _V ) ) -> ( 2nd ` y ) e. _V ) |
|
| 8 | 1st2nd2 | |- ( y e. ( { (/) } X. _V ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
|
| 9 | xp1st | |- ( y e. ( { (/) } X. _V ) -> ( 1st ` y ) e. { (/) } ) |
|
| 10 | elsni | |- ( ( 1st ` y ) e. { (/) } -> ( 1st ` y ) = (/) ) |
|
| 11 | 9 10 | syl | |- ( y e. ( { (/) } X. _V ) -> ( 1st ` y ) = (/) ) |
| 12 | 11 | opeq1d | |- ( y e. ( { (/) } X. _V ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. = <. (/) , ( 2nd ` y ) >. ) |
| 13 | 8 12 | eqtrd | |- ( y e. ( { (/) } X. _V ) -> y = <. (/) , ( 2nd ` y ) >. ) |
| 14 | 13 | eqeq2d | |- ( y e. ( { (/) } X. _V ) -> ( <. (/) , x >. = y <-> <. (/) , x >. = <. (/) , ( 2nd ` y ) >. ) ) |
| 15 | eqcom | |- ( <. (/) , x >. = y <-> y = <. (/) , x >. ) |
|
| 16 | eqid | |- (/) = (/) |
|
| 17 | vex | |- x e. _V |
|
| 18 | 2 17 | opth | |- ( <. (/) , x >. = <. (/) , ( 2nd ` y ) >. <-> ( (/) = (/) /\ x = ( 2nd ` y ) ) ) |
| 19 | 16 18 | mpbiran | |- ( <. (/) , x >. = <. (/) , ( 2nd ` y ) >. <-> x = ( 2nd ` y ) ) |
| 20 | 14 15 19 | 3bitr3g | |- ( y e. ( { (/) } X. _V ) -> ( y = <. (/) , x >. <-> x = ( 2nd ` y ) ) ) |
| 21 | 20 | bicomd | |- ( y e. ( { (/) } X. _V ) -> ( x = ( 2nd ` y ) <-> y = <. (/) , x >. ) ) |
| 22 | 21 | ad2antll | |- ( ( T. /\ ( x e. _V /\ y e. ( { (/) } X. _V ) ) ) -> ( x = ( 2nd ` y ) <-> y = <. (/) , x >. ) ) |
| 23 | 1 6 7 22 | f1o2d | |- ( T. -> inl : _V -1-1-onto-> ( { (/) } X. _V ) ) |
| 24 | 23 | mptru | |- inl : _V -1-1-onto-> ( { (/) } X. _V ) |