This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinal and ordinal sums are always equinumerous. (Contributed by Mario Carneiro, 6-Feb-2013) (Revised by Jim Kingdon, 7-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onadju | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) ~~ ( A |_| B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg | |- ( A e. On -> A ~~ A ) |
|
| 2 | 1 | adantr | |- ( ( A e. On /\ B e. On ) -> A ~~ A ) |
| 3 | simpr | |- ( ( A e. On /\ B e. On ) -> B e. On ) |
|
| 4 | eqid | |- ( x e. B |-> ( A +o x ) ) = ( x e. B |-> ( A +o x ) ) |
|
| 5 | 4 | oacomf1olem | |- ( ( B e. On /\ A e. On ) -> ( ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) /\ ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) ) |
| 6 | 5 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) /\ ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) ) |
| 7 | 6 | simpld | |- ( ( A e. On /\ B e. On ) -> ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) ) |
| 8 | f1oeng | |- ( ( B e. On /\ ( x e. B |-> ( A +o x ) ) : B -1-1-onto-> ran ( x e. B |-> ( A +o x ) ) ) -> B ~~ ran ( x e. B |-> ( A +o x ) ) ) |
|
| 9 | 3 7 8 | syl2anc | |- ( ( A e. On /\ B e. On ) -> B ~~ ran ( x e. B |-> ( A +o x ) ) ) |
| 10 | incom | |- ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = ( ran ( x e. B |-> ( A +o x ) ) i^i A ) |
|
| 11 | 6 | simprd | |- ( ( A e. On /\ B e. On ) -> ( ran ( x e. B |-> ( A +o x ) ) i^i A ) = (/) ) |
| 12 | 10 11 | eqtrid | |- ( ( A e. On /\ B e. On ) -> ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = (/) ) |
| 13 | djuenun | |- ( ( A ~~ A /\ B ~~ ran ( x e. B |-> ( A +o x ) ) /\ ( A i^i ran ( x e. B |-> ( A +o x ) ) ) = (/) ) -> ( A |_| B ) ~~ ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) |
|
| 14 | 2 9 12 13 | syl3anc | |- ( ( A e. On /\ B e. On ) -> ( A |_| B ) ~~ ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) |
| 15 | oarec | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) = ( A u. ran ( x e. B |-> ( A +o x ) ) ) ) |
|
| 16 | 14 15 | breqtrrd | |- ( ( A e. On /\ B e. On ) -> ( A |_| B ) ~~ ( A +o B ) ) |
| 17 | 16 | ensymd | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) ~~ ( A |_| B ) ) |