This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ipval3 . (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| dipfval.2 | |- G = ( +v ` U ) |
||
| dipfval.4 | |- S = ( .sOLD ` U ) |
||
| dipfval.6 | |- N = ( normCV ` U ) |
||
| dipfval.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | ipval2lem2 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ C e. CC ) -> ( ( N ` ( A G ( C S B ) ) ) ^ 2 ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | dipfval.2 | |- G = ( +v ` U ) |
|
| 3 | dipfval.4 | |- S = ( .sOLD ` U ) |
|
| 4 | dipfval.6 | |- N = ( normCV ` U ) |
|
| 5 | dipfval.7 | |- P = ( .iOLD ` U ) |
|
| 6 | simpl1 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ C e. CC ) -> U e. NrmCVec ) |
|
| 7 | simpl2 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ C e. CC ) -> A e. X ) |
|
| 8 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ C e. CC /\ B e. X ) -> ( C S B ) e. X ) |
| 9 | 8 | 3com23 | |- ( ( U e. NrmCVec /\ B e. X /\ C e. CC ) -> ( C S B ) e. X ) |
| 10 | 9 | 3expa | |- ( ( ( U e. NrmCVec /\ B e. X ) /\ C e. CC ) -> ( C S B ) e. X ) |
| 11 | 10 | 3adantl2 | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ C e. CC ) -> ( C S B ) e. X ) |
| 12 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ A e. X /\ ( C S B ) e. X ) -> ( A G ( C S B ) ) e. X ) |
| 13 | 6 7 11 12 | syl3anc | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ C e. CC ) -> ( A G ( C S B ) ) e. X ) |
| 14 | 1 4 | nvcl | |- ( ( U e. NrmCVec /\ ( A G ( C S B ) ) e. X ) -> ( N ` ( A G ( C S B ) ) ) e. RR ) |
| 15 | 6 13 14 | syl2anc | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ C e. CC ) -> ( N ` ( A G ( C S B ) ) ) e. RR ) |
| 16 | 15 | resqcld | |- ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ C e. CC ) -> ( ( N ` ( A G ( C S B ) ) ) ^ 2 ) e. RR ) |