This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjreim | |- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A + ( _i x. B ) ) ) = ( A - ( _i x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | ax-icn | |- _i e. CC |
|
| 3 | recn | |- ( B e. RR -> B e. CC ) |
|
| 4 | mulcl | |- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
|
| 5 | 2 3 4 | sylancr | |- ( B e. RR -> ( _i x. B ) e. CC ) |
| 6 | cjadd | |- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( * ` ( A + ( _i x. B ) ) ) = ( ( * ` A ) + ( * ` ( _i x. B ) ) ) ) |
|
| 7 | 1 5 6 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A + ( _i x. B ) ) ) = ( ( * ` A ) + ( * ` ( _i x. B ) ) ) ) |
| 8 | cjre | |- ( A e. RR -> ( * ` A ) = A ) |
|
| 9 | cjmul | |- ( ( _i e. CC /\ B e. CC ) -> ( * ` ( _i x. B ) ) = ( ( * ` _i ) x. ( * ` B ) ) ) |
|
| 10 | 2 3 9 | sylancr | |- ( B e. RR -> ( * ` ( _i x. B ) ) = ( ( * ` _i ) x. ( * ` B ) ) ) |
| 11 | cji | |- ( * ` _i ) = -u _i |
|
| 12 | 11 | a1i | |- ( B e. RR -> ( * ` _i ) = -u _i ) |
| 13 | cjre | |- ( B e. RR -> ( * ` B ) = B ) |
|
| 14 | 12 13 | oveq12d | |- ( B e. RR -> ( ( * ` _i ) x. ( * ` B ) ) = ( -u _i x. B ) ) |
| 15 | mulneg1 | |- ( ( _i e. CC /\ B e. CC ) -> ( -u _i x. B ) = -u ( _i x. B ) ) |
|
| 16 | 2 3 15 | sylancr | |- ( B e. RR -> ( -u _i x. B ) = -u ( _i x. B ) ) |
| 17 | 10 14 16 | 3eqtrd | |- ( B e. RR -> ( * ` ( _i x. B ) ) = -u ( _i x. B ) ) |
| 18 | 8 17 | oveqan12d | |- ( ( A e. RR /\ B e. RR ) -> ( ( * ` A ) + ( * ` ( _i x. B ) ) ) = ( A + -u ( _i x. B ) ) ) |
| 19 | negsub | |- ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A + -u ( _i x. B ) ) = ( A - ( _i x. B ) ) ) |
|
| 20 | 1 5 19 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + -u ( _i x. B ) ) = ( A - ( _i x. B ) ) ) |
| 21 | 7 18 20 | 3eqtrd | |- ( ( A e. RR /\ B e. RR ) -> ( * ` ( A + ( _i x. B ) ) ) = ( A - ( _i x. B ) ) ) |