This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvdif.1 | |- X = ( BaseSet ` U ) |
|
| nvdif.2 | |- G = ( +v ` U ) |
||
| nvdif.4 | |- S = ( .sOLD ` U ) |
||
| nvdif.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvpi | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( _i S B ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvdif.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvdif.2 | |- G = ( +v ` U ) |
|
| 3 | nvdif.4 | |- S = ( .sOLD ` U ) |
|
| 4 | nvdif.6 | |- N = ( normCV ` U ) |
|
| 5 | simp1 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> U e. NrmCVec ) |
|
| 6 | ax-icn | |- _i e. CC |
|
| 7 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ _i e. CC /\ B e. X ) -> ( _i S B ) e. X ) |
| 8 | 6 7 | mp3an2 | |- ( ( U e. NrmCVec /\ B e. X ) -> ( _i S B ) e. X ) |
| 9 | 8 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i S B ) e. X ) |
| 10 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ A e. X /\ ( _i S B ) e. X ) -> ( A G ( _i S B ) ) e. X ) |
| 11 | 9 10 | syld3an3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G ( _i S B ) ) e. X ) |
| 12 | 1 4 | nvcl | |- ( ( U e. NrmCVec /\ ( A G ( _i S B ) ) e. X ) -> ( N ` ( A G ( _i S B ) ) ) e. RR ) |
| 13 | 5 11 12 | syl2anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( _i S B ) ) ) e. RR ) |
| 14 | 13 | recnd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( _i S B ) ) ) e. CC ) |
| 15 | 14 | mullidd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 x. ( N ` ( A G ( _i S B ) ) ) ) = ( N ` ( A G ( _i S B ) ) ) ) |
| 16 | 6 | absnegi | |- ( abs ` -u _i ) = ( abs ` _i ) |
| 17 | absi | |- ( abs ` _i ) = 1 |
|
| 18 | 16 17 | eqtri | |- ( abs ` -u _i ) = 1 |
| 19 | 18 | oveq1i | |- ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) = ( 1 x. ( N ` ( A G ( _i S B ) ) ) ) |
| 20 | negicn | |- -u _i e. CC |
|
| 21 | 1 3 4 | nvs | |- ( ( U e. NrmCVec /\ -u _i e. CC /\ ( A G ( _i S B ) ) e. X ) -> ( N ` ( -u _i S ( A G ( _i S B ) ) ) ) = ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) ) |
| 22 | 20 21 | mp3an2 | |- ( ( U e. NrmCVec /\ ( A G ( _i S B ) ) e. X ) -> ( N ` ( -u _i S ( A G ( _i S B ) ) ) ) = ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) ) |
| 23 | 5 11 22 | syl2anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( -u _i S ( A G ( _i S B ) ) ) ) = ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) ) |
| 24 | simp2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 25 | 1 2 3 | nvdi | |- ( ( U e. NrmCVec /\ ( -u _i e. CC /\ A e. X /\ ( _i S B ) e. X ) ) -> ( -u _i S ( A G ( _i S B ) ) ) = ( ( -u _i S A ) G ( -u _i S ( _i S B ) ) ) ) |
| 26 | 20 25 | mp3anr1 | |- ( ( U e. NrmCVec /\ ( A e. X /\ ( _i S B ) e. X ) ) -> ( -u _i S ( A G ( _i S B ) ) ) = ( ( -u _i S A ) G ( -u _i S ( _i S B ) ) ) ) |
| 27 | 5 24 9 26 | syl12anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S ( A G ( _i S B ) ) ) = ( ( -u _i S A ) G ( -u _i S ( _i S B ) ) ) ) |
| 28 | 6 6 | mulneg1i | |- ( -u _i x. _i ) = -u ( _i x. _i ) |
| 29 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 30 | 29 | negeqi | |- -u ( _i x. _i ) = -u -u 1 |
| 31 | negneg1e1 | |- -u -u 1 = 1 |
|
| 32 | 30 31 | eqtri | |- -u ( _i x. _i ) = 1 |
| 33 | 28 32 | eqtri | |- ( -u _i x. _i ) = 1 |
| 34 | 33 | oveq1i | |- ( ( -u _i x. _i ) S B ) = ( 1 S B ) |
| 35 | 1 3 | nvsass | |- ( ( U e. NrmCVec /\ ( -u _i e. CC /\ _i e. CC /\ B e. X ) ) -> ( ( -u _i x. _i ) S B ) = ( -u _i S ( _i S B ) ) ) |
| 36 | 20 35 | mp3anr1 | |- ( ( U e. NrmCVec /\ ( _i e. CC /\ B e. X ) ) -> ( ( -u _i x. _i ) S B ) = ( -u _i S ( _i S B ) ) ) |
| 37 | 6 36 | mpanr1 | |- ( ( U e. NrmCVec /\ B e. X ) -> ( ( -u _i x. _i ) S B ) = ( -u _i S ( _i S B ) ) ) |
| 38 | 1 3 | nvsid | |- ( ( U e. NrmCVec /\ B e. X ) -> ( 1 S B ) = B ) |
| 39 | 34 37 38 | 3eqtr3a | |- ( ( U e. NrmCVec /\ B e. X ) -> ( -u _i S ( _i S B ) ) = B ) |
| 40 | 39 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S ( _i S B ) ) = B ) |
| 41 | 40 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( -u _i S A ) G ( -u _i S ( _i S B ) ) ) = ( ( -u _i S A ) G B ) ) |
| 42 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ -u _i e. CC /\ A e. X ) -> ( -u _i S A ) e. X ) |
| 43 | 20 42 | mp3an2 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u _i S A ) e. X ) |
| 44 | 43 | 3adant3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S A ) e. X ) |
| 45 | 1 2 | nvcom | |- ( ( U e. NrmCVec /\ ( -u _i S A ) e. X /\ B e. X ) -> ( ( -u _i S A ) G B ) = ( B G ( -u _i S A ) ) ) |
| 46 | 44 45 | syld3an2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( -u _i S A ) G B ) = ( B G ( -u _i S A ) ) ) |
| 47 | 27 41 46 | 3eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u _i S ( A G ( _i S B ) ) ) = ( B G ( -u _i S A ) ) ) |
| 48 | 47 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( -u _i S ( A G ( _i S B ) ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) |
| 49 | 23 48 | eqtr3d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( abs ` -u _i ) x. ( N ` ( A G ( _i S B ) ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) |
| 50 | 19 49 | eqtr3id | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 x. ( N ` ( A G ( _i S B ) ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) |
| 51 | 15 50 | eqtr3d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( _i S B ) ) ) = ( N ` ( B G ( -u _i S A ) ) ) ) |