This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | submul2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B x. C ) ) = ( A + ( B x. -u C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulneg2 | |- ( ( B e. CC /\ C e. CC ) -> ( B x. -u C ) = -u ( B x. C ) ) |
|
| 2 | 1 | adantl | |- ( ( A e. CC /\ ( B e. CC /\ C e. CC ) ) -> ( B x. -u C ) = -u ( B x. C ) ) |
| 3 | 2 | oveq2d | |- ( ( A e. CC /\ ( B e. CC /\ C e. CC ) ) -> ( A + ( B x. -u C ) ) = ( A + -u ( B x. C ) ) ) |
| 4 | mulcl | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) e. CC ) |
|
| 5 | negsub | |- ( ( A e. CC /\ ( B x. C ) e. CC ) -> ( A + -u ( B x. C ) ) = ( A - ( B x. C ) ) ) |
|
| 6 | 4 5 | sylan2 | |- ( ( A e. CC /\ ( B e. CC /\ C e. CC ) ) -> ( A + -u ( B x. C ) ) = ( A - ( B x. C ) ) ) |
| 7 | 3 6 | eqtr2d | |- ( ( A e. CC /\ ( B e. CC /\ C e. CC ) ) -> ( A - ( B x. C ) ) = ( A + ( B x. -u C ) ) ) |
| 8 | 7 | 3impb | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( B x. C ) ) = ( A + ( B x. -u C ) ) ) |