This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvdif.1 | |- X = ( BaseSet ` U ) |
|
| nvdif.2 | |- G = ( +v ` U ) |
||
| nvdif.4 | |- S = ( .sOLD ` U ) |
||
| nvdif.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvdif | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( -u 1 S B ) ) ) = ( N ` ( B G ( -u 1 S A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvdif.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvdif.2 | |- G = ( +v ` U ) |
|
| 3 | nvdif.4 | |- S = ( .sOLD ` U ) |
|
| 4 | nvdif.6 | |- N = ( normCV ` U ) |
|
| 5 | simp1 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> U e. NrmCVec ) |
|
| 6 | neg1cn | |- -u 1 e. CC |
|
| 7 | 6 | a1i | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> -u 1 e. CC ) |
| 8 | simp3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> B e. X ) |
|
| 9 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 S A ) e. X ) |
| 10 | 6 9 | mp3an2 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S A ) e. X ) |
| 11 | 10 | 3adant3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 S A ) e. X ) |
| 12 | 1 2 3 | nvdi | |- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ B e. X /\ ( -u 1 S A ) e. X ) ) -> ( -u 1 S ( B G ( -u 1 S A ) ) ) = ( ( -u 1 S B ) G ( -u 1 S ( -u 1 S A ) ) ) ) |
| 13 | 5 7 8 11 12 | syl13anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 S ( B G ( -u 1 S A ) ) ) = ( ( -u 1 S B ) G ( -u 1 S ( -u 1 S A ) ) ) ) |
| 14 | 1 3 | nvnegneg | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 S ( -u 1 S A ) ) = A ) |
| 15 | 14 | 3adant3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 S ( -u 1 S A ) ) = A ) |
| 16 | 15 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( -u 1 S B ) G ( -u 1 S ( -u 1 S A ) ) ) = ( ( -u 1 S B ) G A ) ) |
| 17 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( -u 1 S B ) e. X ) |
| 18 | 6 17 | mp3an2 | |- ( ( U e. NrmCVec /\ B e. X ) -> ( -u 1 S B ) e. X ) |
| 19 | 18 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 S B ) e. X ) |
| 20 | simp2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 21 | 1 2 | nvcom | |- ( ( U e. NrmCVec /\ ( -u 1 S B ) e. X /\ A e. X ) -> ( ( -u 1 S B ) G A ) = ( A G ( -u 1 S B ) ) ) |
| 22 | 5 19 20 21 | syl3anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( -u 1 S B ) G A ) = ( A G ( -u 1 S B ) ) ) |
| 23 | 13 16 22 | 3eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 S ( B G ( -u 1 S A ) ) ) = ( A G ( -u 1 S B ) ) ) |
| 24 | 23 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( -u 1 S ( B G ( -u 1 S A ) ) ) ) = ( N ` ( A G ( -u 1 S B ) ) ) ) |
| 25 | 1 2 | nvgcl | |- ( ( U e. NrmCVec /\ B e. X /\ ( -u 1 S A ) e. X ) -> ( B G ( -u 1 S A ) ) e. X ) |
| 26 | 5 8 11 25 | syl3anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( B G ( -u 1 S A ) ) e. X ) |
| 27 | 1 3 4 | nvm1 | |- ( ( U e. NrmCVec /\ ( B G ( -u 1 S A ) ) e. X ) -> ( N ` ( -u 1 S ( B G ( -u 1 S A ) ) ) ) = ( N ` ( B G ( -u 1 S A ) ) ) ) |
| 28 | 5 26 27 | syl2anc | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( -u 1 S ( B G ( -u 1 S A ) ) ) ) = ( N ` ( B G ( -u 1 S A ) ) ) ) |
| 29 | 24 28 | eqtr3d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G ( -u 1 S B ) ) ) = ( N ` ( B G ( -u 1 S A ) ) ) ) |