This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of two versions of the Axiom of Choice. The left-hand side is defined as the Axiom of Choice (first form) of Enderton p. 49. The right-hand side is the Axiom of Choice of TakeutiZaring p. 83. The proof does not depend on AC. (Contributed by NM, 24-Mar-2004) (Revised by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac3 | |- ( CHOICE <-> A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ac | |- ( CHOICE <-> A. y E. f ( f C_ y /\ f Fn dom y ) ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vuniex | |- U. x e. _V |
|
| 4 | 2 3 | xpex | |- ( x X. U. x ) e. _V |
| 5 | simpl | |- ( ( w e. x /\ v e. w ) -> w e. x ) |
|
| 6 | elunii | |- ( ( v e. w /\ w e. x ) -> v e. U. x ) |
|
| 7 | 6 | ancoms | |- ( ( w e. x /\ v e. w ) -> v e. U. x ) |
| 8 | 5 7 | jca | |- ( ( w e. x /\ v e. w ) -> ( w e. x /\ v e. U. x ) ) |
| 9 | 8 | ssopab2i | |- { <. w , v >. | ( w e. x /\ v e. w ) } C_ { <. w , v >. | ( w e. x /\ v e. U. x ) } |
| 10 | df-xp | |- ( x X. U. x ) = { <. w , v >. | ( w e. x /\ v e. U. x ) } |
|
| 11 | 9 10 | sseqtrri | |- { <. w , v >. | ( w e. x /\ v e. w ) } C_ ( x X. U. x ) |
| 12 | 4 11 | ssexi | |- { <. w , v >. | ( w e. x /\ v e. w ) } e. _V |
| 13 | sseq2 | |- ( y = { <. w , v >. | ( w e. x /\ v e. w ) } -> ( f C_ y <-> f C_ { <. w , v >. | ( w e. x /\ v e. w ) } ) ) |
|
| 14 | dmeq | |- ( y = { <. w , v >. | ( w e. x /\ v e. w ) } -> dom y = dom { <. w , v >. | ( w e. x /\ v e. w ) } ) |
|
| 15 | 14 | fneq2d | |- ( y = { <. w , v >. | ( w e. x /\ v e. w ) } -> ( f Fn dom y <-> f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) ) |
| 16 | 13 15 | anbi12d | |- ( y = { <. w , v >. | ( w e. x /\ v e. w ) } -> ( ( f C_ y /\ f Fn dom y ) <-> ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) ) ) |
| 17 | 16 | exbidv | |- ( y = { <. w , v >. | ( w e. x /\ v e. w ) } -> ( E. f ( f C_ y /\ f Fn dom y ) <-> E. f ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) ) ) |
| 18 | 12 17 | spcv | |- ( A. y E. f ( f C_ y /\ f Fn dom y ) -> E. f ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) ) |
| 19 | fndm | |- ( f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } -> dom f = dom { <. w , v >. | ( w e. x /\ v e. w ) } ) |
|
| 20 | dmopab | |- dom { <. w , v >. | ( w e. x /\ v e. w ) } = { w | E. v ( w e. x /\ v e. w ) } |
|
| 21 | 20 | eleq2i | |- ( z e. dom { <. w , v >. | ( w e. x /\ v e. w ) } <-> z e. { w | E. v ( w e. x /\ v e. w ) } ) |
| 22 | vex | |- z e. _V |
|
| 23 | elequ1 | |- ( w = z -> ( w e. x <-> z e. x ) ) |
|
| 24 | eleq2 | |- ( w = z -> ( v e. w <-> v e. z ) ) |
|
| 25 | 23 24 | anbi12d | |- ( w = z -> ( ( w e. x /\ v e. w ) <-> ( z e. x /\ v e. z ) ) ) |
| 26 | 25 | exbidv | |- ( w = z -> ( E. v ( w e. x /\ v e. w ) <-> E. v ( z e. x /\ v e. z ) ) ) |
| 27 | 22 26 | elab | |- ( z e. { w | E. v ( w e. x /\ v e. w ) } <-> E. v ( z e. x /\ v e. z ) ) |
| 28 | 19.42v | |- ( E. v ( z e. x /\ v e. z ) <-> ( z e. x /\ E. v v e. z ) ) |
|
| 29 | n0 | |- ( z =/= (/) <-> E. v v e. z ) |
|
| 30 | 29 | anbi2i | |- ( ( z e. x /\ z =/= (/) ) <-> ( z e. x /\ E. v v e. z ) ) |
| 31 | 28 30 | bitr4i | |- ( E. v ( z e. x /\ v e. z ) <-> ( z e. x /\ z =/= (/) ) ) |
| 32 | 21 27 31 | 3bitrri | |- ( ( z e. x /\ z =/= (/) ) <-> z e. dom { <. w , v >. | ( w e. x /\ v e. w ) } ) |
| 33 | eleq2 | |- ( dom f = dom { <. w , v >. | ( w e. x /\ v e. w ) } -> ( z e. dom f <-> z e. dom { <. w , v >. | ( w e. x /\ v e. w ) } ) ) |
|
| 34 | 32 33 | bitr4id | |- ( dom f = dom { <. w , v >. | ( w e. x /\ v e. w ) } -> ( ( z e. x /\ z =/= (/) ) <-> z e. dom f ) ) |
| 35 | 19 34 | syl | |- ( f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } -> ( ( z e. x /\ z =/= (/) ) <-> z e. dom f ) ) |
| 36 | 35 | adantl | |- ( ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) -> ( ( z e. x /\ z =/= (/) ) <-> z e. dom f ) ) |
| 37 | fnfun | |- ( f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } -> Fun f ) |
|
| 38 | funfvima3 | |- ( ( Fun f /\ f C_ { <. w , v >. | ( w e. x /\ v e. w ) } ) -> ( z e. dom f -> ( f ` z ) e. ( { <. w , v >. | ( w e. x /\ v e. w ) } " { z } ) ) ) |
|
| 39 | 38 | ancoms | |- ( ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ Fun f ) -> ( z e. dom f -> ( f ` z ) e. ( { <. w , v >. | ( w e. x /\ v e. w ) } " { z } ) ) ) |
| 40 | 37 39 | sylan2 | |- ( ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) -> ( z e. dom f -> ( f ` z ) e. ( { <. w , v >. | ( w e. x /\ v e. w ) } " { z } ) ) ) |
| 41 | 36 40 | sylbid | |- ( ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) -> ( ( z e. x /\ z =/= (/) ) -> ( f ` z ) e. ( { <. w , v >. | ( w e. x /\ v e. w ) } " { z } ) ) ) |
| 42 | 41 | imp | |- ( ( ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) /\ ( z e. x /\ z =/= (/) ) ) -> ( f ` z ) e. ( { <. w , v >. | ( w e. x /\ v e. w ) } " { z } ) ) |
| 43 | imasng | |- ( z e. _V -> ( { <. w , v >. | ( w e. x /\ v e. w ) } " { z } ) = { u | z { <. w , v >. | ( w e. x /\ v e. w ) } u } ) |
|
| 44 | 43 | elv | |- ( { <. w , v >. | ( w e. x /\ v e. w ) } " { z } ) = { u | z { <. w , v >. | ( w e. x /\ v e. w ) } u } |
| 45 | vex | |- u e. _V |
|
| 46 | elequ1 | |- ( v = u -> ( v e. z <-> u e. z ) ) |
|
| 47 | 46 | anbi2d | |- ( v = u -> ( ( z e. x /\ v e. z ) <-> ( z e. x /\ u e. z ) ) ) |
| 48 | eqid | |- { <. w , v >. | ( w e. x /\ v e. w ) } = { <. w , v >. | ( w e. x /\ v e. w ) } |
|
| 49 | 22 45 25 47 48 | brab | |- ( z { <. w , v >. | ( w e. x /\ v e. w ) } u <-> ( z e. x /\ u e. z ) ) |
| 50 | 49 | abbii | |- { u | z { <. w , v >. | ( w e. x /\ v e. w ) } u } = { u | ( z e. x /\ u e. z ) } |
| 51 | 44 50 | eqtri | |- ( { <. w , v >. | ( w e. x /\ v e. w ) } " { z } ) = { u | ( z e. x /\ u e. z ) } |
| 52 | ibar | |- ( z e. x -> ( u e. z <-> ( z e. x /\ u e. z ) ) ) |
|
| 53 | 52 | eqabdv | |- ( z e. x -> z = { u | ( z e. x /\ u e. z ) } ) |
| 54 | 51 53 | eqtr4id | |- ( z e. x -> ( { <. w , v >. | ( w e. x /\ v e. w ) } " { z } ) = z ) |
| 55 | 54 | eleq2d | |- ( z e. x -> ( ( f ` z ) e. ( { <. w , v >. | ( w e. x /\ v e. w ) } " { z } ) <-> ( f ` z ) e. z ) ) |
| 56 | 55 | ad2antrl | |- ( ( ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) /\ ( z e. x /\ z =/= (/) ) ) -> ( ( f ` z ) e. ( { <. w , v >. | ( w e. x /\ v e. w ) } " { z } ) <-> ( f ` z ) e. z ) ) |
| 57 | 42 56 | mpbid | |- ( ( ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) /\ ( z e. x /\ z =/= (/) ) ) -> ( f ` z ) e. z ) |
| 58 | 57 | exp32 | |- ( ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) -> ( z e. x -> ( z =/= (/) -> ( f ` z ) e. z ) ) ) |
| 59 | 58 | ralrimiv | |- ( ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) -> A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) |
| 60 | 59 | eximi | |- ( E. f ( f C_ { <. w , v >. | ( w e. x /\ v e. w ) } /\ f Fn dom { <. w , v >. | ( w e. x /\ v e. w ) } ) -> E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) |
| 61 | 18 60 | syl | |- ( A. y E. f ( f C_ y /\ f Fn dom y ) -> E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) |
| 62 | 61 | alrimiv | |- ( A. y E. f ( f C_ y /\ f Fn dom y ) -> A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) |
| 63 | eqid | |- ( w e. dom y |-> ( f ` { u | w y u } ) ) = ( w e. dom y |-> ( f ` { u | w y u } ) ) |
|
| 64 | 63 | aceq3lem | |- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) -> E. f ( f C_ y /\ f Fn dom y ) ) |
| 65 | 64 | alrimiv | |- ( A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) -> A. y E. f ( f C_ y /\ f Fn dom y ) ) |
| 66 | 62 65 | impbii | |- ( A. y E. f ( f C_ y /\ f Fn dom y ) <-> A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) |
| 67 | 1 66 | bitri | |- ( CHOICE <-> A. x E. f A. z e. x ( z =/= (/) -> ( f ` z ) e. z ) ) |