This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the unique existential quantifier df-eu not using the at-most-one quantifier. (Contributed by NM, 12-Aug-1993) This used to be the definition of the unique existential quantifier, while df-eu was then proved as dfeu . (Revised by BJ, 30-Sep-2022) (Proof shortened by Wolf Lammen, 3-Jan-2023) Remove use of ax-11 . (Revised by SN, 21-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eu6 | |- ( E! x ph <-> E. y A. x ( ph <-> x = y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmoeu | |- ( ( E. x ph -> E. y A. x ( ph <-> x = y ) ) <-> E. y A. x ( ph -> x = y ) ) |
|
| 2 | 1 | anbi2i | |- ( ( E. x ph /\ ( E. x ph -> E. y A. x ( ph <-> x = y ) ) ) <-> ( E. x ph /\ E. y A. x ( ph -> x = y ) ) ) |
| 3 | abai | |- ( ( E. x ph /\ E. y A. x ( ph <-> x = y ) ) <-> ( E. x ph /\ ( E. x ph -> E. y A. x ( ph <-> x = y ) ) ) ) |
|
| 4 | eu3v | |- ( E! x ph <-> ( E. x ph /\ E. y A. x ( ph -> x = y ) ) ) |
|
| 5 | 2 3 4 | 3bitr4ri | |- ( E! x ph <-> ( E. x ph /\ E. y A. x ( ph <-> x = y ) ) ) |
| 6 | abai | |- ( ( E. y A. x ( ph <-> x = y ) /\ E. x ph ) <-> ( E. y A. x ( ph <-> x = y ) /\ ( E. y A. x ( ph <-> x = y ) -> E. x ph ) ) ) |
|
| 7 | ancom | |- ( ( E. x ph /\ E. y A. x ( ph <-> x = y ) ) <-> ( E. y A. x ( ph <-> x = y ) /\ E. x ph ) ) |
|
| 8 | biimpr | |- ( ( ph <-> x = y ) -> ( x = y -> ph ) ) |
|
| 9 | 8 | alimi | |- ( A. x ( ph <-> x = y ) -> A. x ( x = y -> ph ) ) |
| 10 | 9 | eximi | |- ( E. y A. x ( ph <-> x = y ) -> E. y A. x ( x = y -> ph ) ) |
| 11 | exsbim | |- ( E. y A. x ( x = y -> ph ) -> E. x ph ) |
|
| 12 | 10 11 | syl | |- ( E. y A. x ( ph <-> x = y ) -> E. x ph ) |
| 13 | 12 | biantru | |- ( E. y A. x ( ph <-> x = y ) <-> ( E. y A. x ( ph <-> x = y ) /\ ( E. y A. x ( ph <-> x = y ) -> E. x ph ) ) ) |
| 14 | 6 7 13 | 3bitr4i | |- ( ( E. x ph /\ E. y A. x ( ph <-> x = y ) ) <-> E. y A. x ( ph <-> x = y ) ) |
| 15 | 5 14 | bitri | |- ( E! x ph <-> E. y A. x ( ph <-> x = y ) ) |