This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0sub | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | |- ( M e. NN0 -> M e. RR ) |
|
| 2 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 3 | leloe | |- ( ( M e. RR /\ N e. RR ) -> ( M <_ N <-> ( M < N \/ M = N ) ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( M < N \/ M = N ) ) ) |
| 5 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 6 | elnn0 | |- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
|
| 7 | nnsub | |- ( ( M e. NN /\ N e. NN ) -> ( M < N <-> ( N - M ) e. NN ) ) |
|
| 8 | 7 | ex | |- ( M e. NN -> ( N e. NN -> ( M < N <-> ( N - M ) e. NN ) ) ) |
| 9 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 10 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 11 | 10 | subid1d | |- ( N e. NN -> ( N - 0 ) = N ) |
| 12 | id | |- ( N e. NN -> N e. NN ) |
|
| 13 | 11 12 | eqeltrd | |- ( N e. NN -> ( N - 0 ) e. NN ) |
| 14 | 9 13 | 2thd | |- ( N e. NN -> ( 0 < N <-> ( N - 0 ) e. NN ) ) |
| 15 | breq1 | |- ( M = 0 -> ( M < N <-> 0 < N ) ) |
|
| 16 | oveq2 | |- ( M = 0 -> ( N - M ) = ( N - 0 ) ) |
|
| 17 | 16 | eleq1d | |- ( M = 0 -> ( ( N - M ) e. NN <-> ( N - 0 ) e. NN ) ) |
| 18 | 15 17 | bibi12d | |- ( M = 0 -> ( ( M < N <-> ( N - M ) e. NN ) <-> ( 0 < N <-> ( N - 0 ) e. NN ) ) ) |
| 19 | 14 18 | imbitrrid | |- ( M = 0 -> ( N e. NN -> ( M < N <-> ( N - M ) e. NN ) ) ) |
| 20 | 8 19 | jaoi | |- ( ( M e. NN \/ M = 0 ) -> ( N e. NN -> ( M < N <-> ( N - M ) e. NN ) ) ) |
| 21 | 6 20 | sylbi | |- ( M e. NN0 -> ( N e. NN -> ( M < N <-> ( N - M ) e. NN ) ) ) |
| 22 | nn0nlt0 | |- ( M e. NN0 -> -. M < 0 ) |
|
| 23 | 22 | pm2.21d | |- ( M e. NN0 -> ( M < 0 -> ( 0 - M ) e. NN ) ) |
| 24 | nngt0 | |- ( ( 0 - M ) e. NN -> 0 < ( 0 - M ) ) |
|
| 25 | 0re | |- 0 e. RR |
|
| 26 | posdif | |- ( ( M e. RR /\ 0 e. RR ) -> ( M < 0 <-> 0 < ( 0 - M ) ) ) |
|
| 27 | 1 25 26 | sylancl | |- ( M e. NN0 -> ( M < 0 <-> 0 < ( 0 - M ) ) ) |
| 28 | 24 27 | imbitrrid | |- ( M e. NN0 -> ( ( 0 - M ) e. NN -> M < 0 ) ) |
| 29 | 23 28 | impbid | |- ( M e. NN0 -> ( M < 0 <-> ( 0 - M ) e. NN ) ) |
| 30 | breq2 | |- ( N = 0 -> ( M < N <-> M < 0 ) ) |
|
| 31 | oveq1 | |- ( N = 0 -> ( N - M ) = ( 0 - M ) ) |
|
| 32 | 31 | eleq1d | |- ( N = 0 -> ( ( N - M ) e. NN <-> ( 0 - M ) e. NN ) ) |
| 33 | 30 32 | bibi12d | |- ( N = 0 -> ( ( M < N <-> ( N - M ) e. NN ) <-> ( M < 0 <-> ( 0 - M ) e. NN ) ) ) |
| 34 | 29 33 | syl5ibrcom | |- ( M e. NN0 -> ( N = 0 -> ( M < N <-> ( N - M ) e. NN ) ) ) |
| 35 | 21 34 | jaod | |- ( M e. NN0 -> ( ( N e. NN \/ N = 0 ) -> ( M < N <-> ( N - M ) e. NN ) ) ) |
| 36 | 5 35 | biimtrid | |- ( M e. NN0 -> ( N e. NN0 -> ( M < N <-> ( N - M ) e. NN ) ) ) |
| 37 | 36 | imp | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M < N <-> ( N - M ) e. NN ) ) |
| 38 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 39 | nn0cn | |- ( M e. NN0 -> M e. CC ) |
|
| 40 | subeq0 | |- ( ( N e. CC /\ M e. CC ) -> ( ( N - M ) = 0 <-> N = M ) ) |
|
| 41 | 38 39 40 | syl2anr | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N - M ) = 0 <-> N = M ) ) |
| 42 | eqcom | |- ( N = M <-> M = N ) |
|
| 43 | 41 42 | bitr2di | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M = N <-> ( N - M ) = 0 ) ) |
| 44 | 37 43 | orbi12d | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M < N \/ M = N ) <-> ( ( N - M ) e. NN \/ ( N - M ) = 0 ) ) ) |
| 45 | 4 44 | bitrd | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( ( N - M ) e. NN \/ ( N - M ) = 0 ) ) ) |
| 46 | elnn0 | |- ( ( N - M ) e. NN0 <-> ( ( N - M ) e. NN \/ ( N - M ) = 0 ) ) |
|
| 47 | 45 46 | bitr4di | |- ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( N - M ) e. NN0 ) ) |