This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a real number is between a positive real number and twice the positive real number, the real number modulo the positive real number equals the real number minus the positive real number. (Contributed by Alexander van der Vekens, 13-May-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2submod | |- ( ( ( A e. RR /\ B e. RR+ ) /\ ( B <_ A /\ A < ( 2 x. B ) ) ) -> ( A mod B ) = ( A - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre | |- ( B e. RR+ -> B e. RR ) |
|
| 2 | ax-1rid | |- ( B e. RR -> ( B x. 1 ) = B ) |
|
| 3 | 1 2 | syl | |- ( B e. RR+ -> ( B x. 1 ) = B ) |
| 4 | 3 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> ( B x. 1 ) = B ) |
| 5 | 4 | oveq2d | |- ( ( A e. RR /\ B e. RR+ ) -> ( A - ( B x. 1 ) ) = ( A - B ) ) |
| 6 | 5 | oveq1d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( B x. 1 ) ) mod B ) = ( ( A - B ) mod B ) ) |
| 7 | 6 | adantr | |- ( ( ( A e. RR /\ B e. RR+ ) /\ ( B <_ A /\ A < ( 2 x. B ) ) ) -> ( ( A - ( B x. 1 ) ) mod B ) = ( ( A - B ) mod B ) ) |
| 8 | simpl | |- ( ( A e. RR /\ B e. RR+ ) -> A e. RR ) |
|
| 9 | simpr | |- ( ( A e. RR /\ B e. RR+ ) -> B e. RR+ ) |
|
| 10 | 1zzd | |- ( ( A e. RR /\ B e. RR+ ) -> 1 e. ZZ ) |
|
| 11 | 8 9 10 | 3jca | |- ( ( A e. RR /\ B e. RR+ ) -> ( A e. RR /\ B e. RR+ /\ 1 e. ZZ ) ) |
| 12 | 11 | adantr | |- ( ( ( A e. RR /\ B e. RR+ ) /\ ( B <_ A /\ A < ( 2 x. B ) ) ) -> ( A e. RR /\ B e. RR+ /\ 1 e. ZZ ) ) |
| 13 | modcyc2 | |- ( ( A e. RR /\ B e. RR+ /\ 1 e. ZZ ) -> ( ( A - ( B x. 1 ) ) mod B ) = ( A mod B ) ) |
|
| 14 | 12 13 | syl | |- ( ( ( A e. RR /\ B e. RR+ ) /\ ( B <_ A /\ A < ( 2 x. B ) ) ) -> ( ( A - ( B x. 1 ) ) mod B ) = ( A mod B ) ) |
| 15 | resubcl | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |
|
| 16 | 1 15 | sylan2 | |- ( ( A e. RR /\ B e. RR+ ) -> ( A - B ) e. RR ) |
| 17 | 16 9 | jca | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - B ) e. RR /\ B e. RR+ ) ) |
| 18 | subge0 | |- ( ( A e. RR /\ B e. RR ) -> ( 0 <_ ( A - B ) <-> B <_ A ) ) |
|
| 19 | 1 18 | sylan2 | |- ( ( A e. RR /\ B e. RR+ ) -> ( 0 <_ ( A - B ) <-> B <_ A ) ) |
| 20 | 19 | bicomd | |- ( ( A e. RR /\ B e. RR+ ) -> ( B <_ A <-> 0 <_ ( A - B ) ) ) |
| 21 | rpcn | |- ( B e. RR+ -> B e. CC ) |
|
| 22 | 21 | 2timesd | |- ( B e. RR+ -> ( 2 x. B ) = ( B + B ) ) |
| 23 | 22 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> ( 2 x. B ) = ( B + B ) ) |
| 24 | 23 | breq2d | |- ( ( A e. RR /\ B e. RR+ ) -> ( A < ( 2 x. B ) <-> A < ( B + B ) ) ) |
| 25 | 1 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. RR ) |
| 26 | 8 25 25 | ltsubaddd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - B ) < B <-> A < ( B + B ) ) ) |
| 27 | 24 26 | bitr4d | |- ( ( A e. RR /\ B e. RR+ ) -> ( A < ( 2 x. B ) <-> ( A - B ) < B ) ) |
| 28 | 20 27 | anbi12d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( B <_ A /\ A < ( 2 x. B ) ) <-> ( 0 <_ ( A - B ) /\ ( A - B ) < B ) ) ) |
| 29 | 28 | biimpa | |- ( ( ( A e. RR /\ B e. RR+ ) /\ ( B <_ A /\ A < ( 2 x. B ) ) ) -> ( 0 <_ ( A - B ) /\ ( A - B ) < B ) ) |
| 30 | modid | |- ( ( ( ( A - B ) e. RR /\ B e. RR+ ) /\ ( 0 <_ ( A - B ) /\ ( A - B ) < B ) ) -> ( ( A - B ) mod B ) = ( A - B ) ) |
|
| 31 | 17 29 30 | syl2an2r | |- ( ( ( A e. RR /\ B e. RR+ ) /\ ( B <_ A /\ A < ( 2 x. B ) ) ) -> ( ( A - B ) mod B ) = ( A - B ) ) |
| 32 | 7 14 31 | 3eqtr3d | |- ( ( ( A e. RR /\ B e. RR+ ) /\ ( B <_ A /\ A < ( 2 x. B ) ) ) -> ( A mod B ) = ( A - B ) ) |