This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the inner product expressed by the norm defined by it. (Contributed by NM, 31-Jan-2007) (Revised by AV, 18-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipfval.x | |- X = ( Base ` W ) |
|
| cphipfval.p | |- .+ = ( +g ` W ) |
||
| cphipfval.s | |- .x. = ( .s ` W ) |
||
| cphipfval.n | |- N = ( norm ` W ) |
||
| cphipfval.i | |- ., = ( .i ` W ) |
||
| cphipval2.m | |- .- = ( -g ` W ) |
||
| cphipval2.f | |- F = ( Scalar ` W ) |
||
| cphipval2.k | |- K = ( Base ` F ) |
||
| Assertion | cphipval2 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., B ) = ( ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipfval.x | |- X = ( Base ` W ) |
|
| 2 | cphipfval.p | |- .+ = ( +g ` W ) |
|
| 3 | cphipfval.s | |- .x. = ( .s ` W ) |
|
| 4 | cphipfval.n | |- N = ( norm ` W ) |
|
| 5 | cphipfval.i | |- ., = ( .i ` W ) |
|
| 6 | cphipval2.m | |- .- = ( -g ` W ) |
|
| 7 | cphipval2.f | |- F = ( Scalar ` W ) |
|
| 8 | cphipval2.k | |- K = ( Base ` F ) |
|
| 9 | simpl | |- ( ( W e. CPreHil /\ _i e. K ) -> W e. CPreHil ) |
|
| 10 | 9 | 3ad2ant1 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> W e. CPreHil ) |
| 11 | cphngp | |- ( W e. CPreHil -> W e. NrmGrp ) |
|
| 12 | 11 | adantr | |- ( ( W e. CPreHil /\ _i e. K ) -> W e. NrmGrp ) |
| 13 | ngpgrp | |- ( W e. NrmGrp -> W e. Grp ) |
|
| 14 | 12 13 | syl | |- ( ( W e. CPreHil /\ _i e. K ) -> W e. Grp ) |
| 15 | 1 2 | grpcl | |- ( ( W e. Grp /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) |
| 16 | 14 15 | syl3an1 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) |
| 17 | 1 5 4 | nmsq | |- ( ( W e. CPreHil /\ ( A .+ B ) e. X ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
| 18 | 10 16 17 | syl2anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( A .+ B ) ., ( A .+ B ) ) ) |
| 19 | simp2 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 20 | simp3 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> B e. X ) |
|
| 21 | 5 1 2 10 19 20 19 20 | cph2di | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A .+ B ) ., ( A .+ B ) ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) |
| 22 | 18 21 | eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) = ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) |
| 23 | 1 6 | grpsubcl | |- ( ( W e. Grp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 24 | 14 23 | syl3an1 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 25 | 1 5 4 | nmsq | |- ( ( W e. CPreHil /\ ( A .- B ) e. X ) -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( A .- B ) ., ( A .- B ) ) ) |
| 26 | 10 24 25 | syl2anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( A .- B ) ., ( A .- B ) ) ) |
| 27 | 5 1 6 10 19 20 19 20 | cph2subdi | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A .- B ) ., ( A .- B ) ) = ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) |
| 28 | 26 27 | eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .- B ) ) ^ 2 ) = ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) |
| 29 | 22 28 | oveq12d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) - ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) ) |
| 30 | 1 5 | reipcl | |- ( ( W e. CPreHil /\ A e. X ) -> ( A ., A ) e. RR ) |
| 31 | 30 | adantlr | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X ) -> ( A ., A ) e. RR ) |
| 32 | 31 | recnd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X ) -> ( A ., A ) e. CC ) |
| 33 | 32 | 3adant3 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., A ) e. CC ) |
| 34 | 1 5 | reipcl | |- ( ( W e. CPreHil /\ B e. X ) -> ( B ., B ) e. RR ) |
| 35 | 34 | adantlr | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X ) -> ( B ., B ) e. RR ) |
| 36 | 35 | recnd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X ) -> ( B ., B ) e. CC ) |
| 37 | 36 | 3adant2 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( B ., B ) e. CC ) |
| 38 | 33 37 | addcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., A ) + ( B ., B ) ) e. CC ) |
| 39 | 1 5 | cphipcl | |- ( ( W e. CPreHil /\ A e. X /\ B e. X ) -> ( A ., B ) e. CC ) |
| 40 | 9 39 | syl3an1 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., B ) e. CC ) |
| 41 | 1 5 | cphipcl | |- ( ( W e. CPreHil /\ B e. X /\ A e. X ) -> ( B ., A ) e. CC ) |
| 42 | 9 41 | syl3an1 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X /\ A e. X ) -> ( B ., A ) e. CC ) |
| 43 | 42 | 3com23 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( B ., A ) e. CC ) |
| 44 | 40 43 | addcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., B ) + ( B ., A ) ) e. CC ) |
| 45 | 38 44 44 | pnncand | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., A ) + ( B ., B ) ) + ( ( A ., B ) + ( B ., A ) ) ) - ( ( ( A ., A ) + ( B ., B ) ) - ( ( A ., B ) + ( B ., A ) ) ) ) = ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) |
| 46 | 29 45 | eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) = ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) ) |
| 47 | 14 | 3ad2ant1 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> W e. Grp ) |
| 48 | cphlmod | |- ( W e. CPreHil -> W e. LMod ) |
|
| 49 | 48 | adantr | |- ( ( W e. CPreHil /\ _i e. K ) -> W e. LMod ) |
| 50 | 49 | adantr | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X ) -> W e. LMod ) |
| 51 | simplr | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X ) -> _i e. K ) |
|
| 52 | simpr | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X ) -> B e. X ) |
|
| 53 | 1 7 3 8 | lmodvscl | |- ( ( W e. LMod /\ _i e. K /\ B e. X ) -> ( _i .x. B ) e. X ) |
| 54 | 50 51 52 53 | syl3anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ B e. X ) -> ( _i .x. B ) e. X ) |
| 55 | 54 | 3adant2 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i .x. B ) e. X ) |
| 56 | 1 2 | grpcl | |- ( ( W e. Grp /\ A e. X /\ ( _i .x. B ) e. X ) -> ( A .+ ( _i .x. B ) ) e. X ) |
| 57 | 47 19 55 56 | syl3anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A .+ ( _i .x. B ) ) e. X ) |
| 58 | 1 5 4 | nmsq | |- ( ( W e. CPreHil /\ ( A .+ ( _i .x. B ) ) e. X ) -> ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) = ( ( A .+ ( _i .x. B ) ) ., ( A .+ ( _i .x. B ) ) ) ) |
| 59 | 10 57 58 | syl2anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) = ( ( A .+ ( _i .x. B ) ) ., ( A .+ ( _i .x. B ) ) ) ) |
| 60 | 5 1 2 10 19 55 19 55 | cph2di | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A .+ ( _i .x. B ) ) ., ( A .+ ( _i .x. B ) ) ) = ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) |
| 61 | 59 60 | eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) = ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) |
| 62 | 1 6 | grpsubcl | |- ( ( W e. Grp /\ A e. X /\ ( _i .x. B ) e. X ) -> ( A .- ( _i .x. B ) ) e. X ) |
| 63 | 47 19 55 62 | syl3anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A .- ( _i .x. B ) ) e. X ) |
| 64 | 1 5 4 | nmsq | |- ( ( W e. CPreHil /\ ( A .- ( _i .x. B ) ) e. X ) -> ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) = ( ( A .- ( _i .x. B ) ) ., ( A .- ( _i .x. B ) ) ) ) |
| 65 | 10 63 64 | syl2anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) = ( ( A .- ( _i .x. B ) ) ., ( A .- ( _i .x. B ) ) ) ) |
| 66 | 5 1 6 10 19 55 19 55 | cph2subdi | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A .- ( _i .x. B ) ) ., ( A .- ( _i .x. B ) ) ) = ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) - ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) |
| 67 | 65 66 | eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) = ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) - ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) |
| 68 | 61 67 | oveq12d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) = ( ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) - ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) - ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) ) |
| 69 | 68 | oveq2d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) = ( _i x. ( ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) - ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) - ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) ) ) |
| 70 | 1 5 | cphipcl | |- ( ( W e. CPreHil /\ ( _i .x. B ) e. X /\ ( _i .x. B ) e. X ) -> ( ( _i .x. B ) ., ( _i .x. B ) ) e. CC ) |
| 71 | 10 55 55 70 | syl3anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i .x. B ) ., ( _i .x. B ) ) e. CC ) |
| 72 | 33 71 | addcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) e. CC ) |
| 73 | 1 5 | cphipcl | |- ( ( W e. CPreHil /\ A e. X /\ ( _i .x. B ) e. X ) -> ( A ., ( _i .x. B ) ) e. CC ) |
| 74 | 10 19 55 73 | syl3anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., ( _i .x. B ) ) e. CC ) |
| 75 | 1 5 | cphipcl | |- ( ( W e. CPreHil /\ ( _i .x. B ) e. X /\ A e. X ) -> ( ( _i .x. B ) ., A ) e. CC ) |
| 76 | 10 55 19 75 | syl3anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i .x. B ) ., A ) e. CC ) |
| 77 | 74 76 | addcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) e. CC ) |
| 78 | 72 77 77 | pnncand | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) - ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) - ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) = ( ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) |
| 79 | 78 | oveq2d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) - ( ( ( A ., A ) + ( ( _i .x. B ) ., ( _i .x. B ) ) ) - ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) ) = ( _i x. ( ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) ) |
| 80 | 1 3 5 7 8 | cphassir | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., ( _i .x. B ) ) = ( -u _i x. ( A ., B ) ) ) |
| 81 | 1 3 5 7 8 | cphassi | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i .x. B ) ., A ) = ( _i x. ( B ., A ) ) ) |
| 82 | 80 81 | oveq12d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) = ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) |
| 83 | 82 82 | oveq12d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) = ( ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) + ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) ) |
| 84 | 83 | oveq2d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) = ( _i x. ( ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) + ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) ) ) |
| 85 | ax-icn | |- _i e. CC |
|
| 86 | 85 | a1i | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> _i e. CC ) |
| 87 | negicn | |- -u _i e. CC |
|
| 88 | 87 | a1i | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> -u _i e. CC ) |
| 89 | 88 40 | mulcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( -u _i x. ( A ., B ) ) e. CC ) |
| 90 | 86 43 | mulcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( B ., A ) ) e. CC ) |
| 91 | 89 90 | addcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) e. CC ) |
| 92 | 86 91 91 | adddid | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) + ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) ) = ( ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) + ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) ) ) |
| 93 | 86 89 90 | adddid | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) = ( ( _i x. ( -u _i x. ( A ., B ) ) ) + ( _i x. ( _i x. ( B ., A ) ) ) ) ) |
| 94 | 86 88 40 | mulassd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i x. -u _i ) x. ( A ., B ) ) = ( _i x. ( -u _i x. ( A ., B ) ) ) ) |
| 95 | 85 85 | mulneg2i | |- ( _i x. -u _i ) = -u ( _i x. _i ) |
| 96 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 97 | 96 | negeqi | |- -u ( _i x. _i ) = -u -u 1 |
| 98 | negneg1e1 | |- -u -u 1 = 1 |
|
| 99 | 95 97 98 | 3eqtri | |- ( _i x. -u _i ) = 1 |
| 100 | 99 | oveq1i | |- ( ( _i x. -u _i ) x. ( A ., B ) ) = ( 1 x. ( A ., B ) ) |
| 101 | 94 100 | eqtr3di | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( -u _i x. ( A ., B ) ) ) = ( 1 x. ( A ., B ) ) ) |
| 102 | 86 86 43 | mulassd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i x. _i ) x. ( B ., A ) ) = ( _i x. ( _i x. ( B ., A ) ) ) ) |
| 103 | 96 | oveq1i | |- ( ( _i x. _i ) x. ( B ., A ) ) = ( -u 1 x. ( B ., A ) ) |
| 104 | 102 103 | eqtr3di | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( _i x. ( B ., A ) ) ) = ( -u 1 x. ( B ., A ) ) ) |
| 105 | 101 104 | oveq12d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i x. ( -u _i x. ( A ., B ) ) ) + ( _i x. ( _i x. ( B ., A ) ) ) ) = ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) ) |
| 106 | 93 105 | eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) = ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) ) |
| 107 | 106 106 | oveq12d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) + ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) ) = ( ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) + ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) ) ) |
| 108 | 40 | mullidd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( 1 x. ( A ., B ) ) = ( A ., B ) ) |
| 109 | 108 | oveq1d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) = ( ( A ., B ) + ( -u 1 x. ( B ., A ) ) ) ) |
| 110 | addneg1mul | |- ( ( ( A ., B ) e. CC /\ ( B ., A ) e. CC ) -> ( ( A ., B ) + ( -u 1 x. ( B ., A ) ) ) = ( ( A ., B ) - ( B ., A ) ) ) |
|
| 111 | 40 43 110 | syl2anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., B ) + ( -u 1 x. ( B ., A ) ) ) = ( ( A ., B ) - ( B ., A ) ) ) |
| 112 | 109 111 | eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) = ( ( A ., B ) - ( B ., A ) ) ) |
| 113 | 112 112 | oveq12d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) + ( ( 1 x. ( A ., B ) ) + ( -u 1 x. ( B ., A ) ) ) ) = ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) |
| 114 | 107 113 | eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) + ( _i x. ( ( -u _i x. ( A ., B ) ) + ( _i x. ( B ., A ) ) ) ) ) = ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) |
| 115 | 84 92 114 | 3eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) + ( ( A ., ( _i .x. B ) ) + ( ( _i .x. B ) ., A ) ) ) ) = ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) |
| 116 | 69 79 115 | 3eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) = ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) |
| 117 | 46 116 | oveq12d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) ) |
| 118 | 117 | oveq1d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) / 4 ) = ( ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) / 4 ) ) |
| 119 | 40 43 | subcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., B ) - ( B ., A ) ) e. CC ) |
| 120 | 44 44 119 119 | add4d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) = ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) + ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) ) |
| 121 | 40 43 40 | ppncand | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) = ( ( A ., B ) + ( A ., B ) ) ) |
| 122 | 121 121 | oveq12d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) + ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) = ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) ) |
| 123 | 120 122 | eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) = ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) ) |
| 124 | 123 | oveq1d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( ( A ., B ) + ( B ., A ) ) + ( ( A ., B ) + ( B ., A ) ) ) + ( ( ( A ., B ) - ( B ., A ) ) + ( ( A ., B ) - ( B ., A ) ) ) ) / 4 ) = ( ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) / 4 ) ) |
| 125 | 40 | 2timesd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( 2 x. ( A ., B ) ) = ( ( A ., B ) + ( A ., B ) ) ) |
| 126 | 125 | eqcomd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( A ., B ) + ( A ., B ) ) = ( 2 x. ( A ., B ) ) ) |
| 127 | 126 126 | oveq12d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) = ( ( 2 x. ( A ., B ) ) + ( 2 x. ( A ., B ) ) ) ) |
| 128 | 2cnd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> 2 e. CC ) |
|
| 129 | 128 128 40 | adddird | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( 2 + 2 ) x. ( A ., B ) ) = ( ( 2 x. ( A ., B ) ) + ( 2 x. ( A ., B ) ) ) ) |
| 130 | 2p2e4 | |- ( 2 + 2 ) = 4 |
|
| 131 | 130 | a1i | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( 2 + 2 ) = 4 ) |
| 132 | 131 | oveq1d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( 2 + 2 ) x. ( A ., B ) ) = ( 4 x. ( A ., B ) ) ) |
| 133 | 127 129 132 | 3eqtr2d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) = ( 4 x. ( A ., B ) ) ) |
| 134 | 133 | oveq1d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) / 4 ) = ( ( 4 x. ( A ., B ) ) / 4 ) ) |
| 135 | 4cn | |- 4 e. CC |
|
| 136 | 135 | a1i | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> 4 e. CC ) |
| 137 | 4ne0 | |- 4 =/= 0 |
|
| 138 | 137 | a1i | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> 4 =/= 0 ) |
| 139 | 40 136 138 | divcan3d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( 4 x. ( A ., B ) ) / 4 ) = ( A ., B ) ) |
| 140 | 134 139 | eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( A ., B ) + ( A ., B ) ) + ( ( A ., B ) + ( A ., B ) ) ) / 4 ) = ( A ., B ) ) |
| 141 | 118 124 140 | 3eqtrrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., B ) = ( ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |