This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Associative" law for the second argument of an inner product with scalar _ i . (Contributed by AV, 17-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphassi.x | |- X = ( Base ` W ) |
|
| cphassi.s | |- .x. = ( .s ` W ) |
||
| cphassi.i | |- ., = ( .i ` W ) |
||
| cphassi.f | |- F = ( Scalar ` W ) |
||
| cphassi.k | |- K = ( Base ` F ) |
||
| Assertion | cphassir | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., ( _i .x. B ) ) = ( -u _i x. ( A ., B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphassi.x | |- X = ( Base ` W ) |
|
| 2 | cphassi.s | |- .x. = ( .s ` W ) |
|
| 3 | cphassi.i | |- ., = ( .i ` W ) |
|
| 4 | cphassi.f | |- F = ( Scalar ` W ) |
|
| 5 | cphassi.k | |- K = ( Base ` F ) |
|
| 6 | simp1l | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> W e. CPreHil ) |
|
| 7 | simp1r | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> _i e. K ) |
|
| 8 | simp2 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 9 | simp3 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> B e. X ) |
|
| 10 | 3 1 4 5 2 | cphassr | |- ( ( W e. CPreHil /\ ( _i e. K /\ A e. X /\ B e. X ) ) -> ( A ., ( _i .x. B ) ) = ( ( * ` _i ) x. ( A ., B ) ) ) |
| 11 | 6 7 8 9 10 | syl13anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., ( _i .x. B ) ) = ( ( * ` _i ) x. ( A ., B ) ) ) |
| 12 | cji | |- ( * ` _i ) = -u _i |
|
| 13 | 12 | oveq1i | |- ( ( * ` _i ) x. ( A ., B ) ) = ( -u _i x. ( A ., B ) ) |
| 14 | 11 13 | eqtrdi | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., ( _i .x. B ) ) = ( -u _i x. ( A ., B ) ) ) |