This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inner product of an element with itself is real. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reipcl.v | |- V = ( Base ` W ) |
|
| reipcl.h | |- ., = ( .i ` W ) |
||
| Assertion | reipcl | |- ( ( W e. CPreHil /\ A e. V ) -> ( A ., A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reipcl.v | |- V = ( Base ` W ) |
|
| 2 | reipcl.h | |- ., = ( .i ` W ) |
|
| 3 | eqid | |- ( norm ` W ) = ( norm ` W ) |
|
| 4 | 1 2 3 | nmsq | |- ( ( W e. CPreHil /\ A e. V ) -> ( ( ( norm ` W ) ` A ) ^ 2 ) = ( A ., A ) ) |
| 5 | cphngp | |- ( W e. CPreHil -> W e. NrmGrp ) |
|
| 6 | 1 3 | nmcl | |- ( ( W e. NrmGrp /\ A e. V ) -> ( ( norm ` W ) ` A ) e. RR ) |
| 7 | 5 6 | sylan | |- ( ( W e. CPreHil /\ A e. V ) -> ( ( norm ` W ) ` A ) e. RR ) |
| 8 | 7 | resqcld | |- ( ( W e. CPreHil /\ A e. V ) -> ( ( ( norm ` W ) ` A ) ^ 2 ) e. RR ) |
| 9 | 4 8 | eqeltrrd | |- ( ( W e. CPreHil /\ A e. V ) -> ( A ., A ) e. RR ) |