This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product. Complex version of ip2di . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | |- ., = ( .i ` W ) |
|
| cphipcj.v | |- V = ( Base ` W ) |
||
| cphdir.P | |- .+ = ( +g ` W ) |
||
| cph2di.1 | |- ( ph -> W e. CPreHil ) |
||
| cph2di.2 | |- ( ph -> A e. V ) |
||
| cph2di.3 | |- ( ph -> B e. V ) |
||
| cph2di.4 | |- ( ph -> C e. V ) |
||
| cph2di.5 | |- ( ph -> D e. V ) |
||
| Assertion | cph2di | |- ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( ( A ., C ) + ( B ., D ) ) + ( ( A ., D ) + ( B ., C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | |- ., = ( .i ` W ) |
|
| 2 | cphipcj.v | |- V = ( Base ` W ) |
|
| 3 | cphdir.P | |- .+ = ( +g ` W ) |
|
| 4 | cph2di.1 | |- ( ph -> W e. CPreHil ) |
|
| 5 | cph2di.2 | |- ( ph -> A e. V ) |
|
| 6 | cph2di.3 | |- ( ph -> B e. V ) |
|
| 7 | cph2di.4 | |- ( ph -> C e. V ) |
|
| 8 | cph2di.5 | |- ( ph -> D e. V ) |
|
| 9 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 10 | eqid | |- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
|
| 11 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 12 | 4 11 | syl | |- ( ph -> W e. PreHil ) |
| 13 | 9 1 2 3 10 12 5 6 7 8 | ip2di | |- ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ( +g ` ( Scalar ` W ) ) ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) ) |
| 14 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 15 | 9 | clmadd | |- ( W e. CMod -> + = ( +g ` ( Scalar ` W ) ) ) |
| 16 | 4 14 15 | 3syl | |- ( ph -> + = ( +g ` ( Scalar ` W ) ) ) |
| 17 | 16 | oveqd | |- ( ph -> ( ( A ., C ) + ( B ., D ) ) = ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ) |
| 18 | 16 | oveqd | |- ( ph -> ( ( A ., D ) + ( B ., C ) ) = ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) |
| 19 | 16 17 18 | oveq123d | |- ( ph -> ( ( ( A ., C ) + ( B ., D ) ) + ( ( A ., D ) + ( B ., C ) ) ) = ( ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ( +g ` ( Scalar ` W ) ) ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) ) |
| 20 | 13 19 | eqtr4d | |- ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( ( A ., C ) + ( B ., D ) ) + ( ( A ., D ) + ( B ., C ) ) ) ) |