This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Four times the inner product value cphipval2 . (Contributed by NM, 1-Feb-2008) (Revised by AV, 18-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipfval.x | |- X = ( Base ` W ) |
|
| cphipfval.p | |- .+ = ( +g ` W ) |
||
| cphipfval.s | |- .x. = ( .s ` W ) |
||
| cphipfval.n | |- N = ( norm ` W ) |
||
| cphipfval.i | |- ., = ( .i ` W ) |
||
| cphipval2.m | |- .- = ( -g ` W ) |
||
| cphipval2.f | |- F = ( Scalar ` W ) |
||
| cphipval2.k | |- K = ( Base ` F ) |
||
| Assertion | 4cphipval2 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( 4 x. ( A ., B ) ) = ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipfval.x | |- X = ( Base ` W ) |
|
| 2 | cphipfval.p | |- .+ = ( +g ` W ) |
|
| 3 | cphipfval.s | |- .x. = ( .s ` W ) |
|
| 4 | cphipfval.n | |- N = ( norm ` W ) |
|
| 5 | cphipfval.i | |- ., = ( .i ` W ) |
|
| 6 | cphipval2.m | |- .- = ( -g ` W ) |
|
| 7 | cphipval2.f | |- F = ( Scalar ` W ) |
|
| 8 | cphipval2.k | |- K = ( Base ` F ) |
|
| 9 | 1 2 3 4 5 6 7 8 | cphipval2 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A ., B ) = ( ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 10 | 9 | oveq2d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( 4 x. ( A ., B ) ) = ( 4 x. ( ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) / 4 ) ) ) |
| 11 | 7 8 | cphsubrg | |- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
| 12 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 13 | 12 | subrgss | |- ( K e. ( SubRing ` CCfld ) -> K C_ CC ) |
| 14 | 11 13 | syl | |- ( W e. CPreHil -> K C_ CC ) |
| 15 | 14 | adantr | |- ( ( W e. CPreHil /\ _i e. K ) -> K C_ CC ) |
| 16 | 15 | 3ad2ant1 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> K C_ CC ) |
| 17 | simp1l | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> W e. CPreHil ) |
|
| 18 | cphngp | |- ( W e. CPreHil -> W e. NrmGrp ) |
|
| 19 | ngpgrp | |- ( W e. NrmGrp -> W e. Grp ) |
|
| 20 | 18 19 | syl | |- ( W e. CPreHil -> W e. Grp ) |
| 21 | 20 | adantr | |- ( ( W e. CPreHil /\ _i e. K ) -> W e. Grp ) |
| 22 | 1 2 | grpcl | |- ( ( W e. Grp /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) |
| 23 | 21 22 | syl3an1 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A .+ B ) e. X ) |
| 24 | 1 5 4 7 8 | cphnmcl | |- ( ( W e. CPreHil /\ ( A .+ B ) e. X ) -> ( N ` ( A .+ B ) ) e. K ) |
| 25 | 17 23 24 | syl2anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( N ` ( A .+ B ) ) e. K ) |
| 26 | 16 25 | sseldd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( N ` ( A .+ B ) ) e. CC ) |
| 27 | 26 | sqcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .+ B ) ) ^ 2 ) e. CC ) |
| 28 | 1 6 | grpsubcl | |- ( ( W e. Grp /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 29 | 21 28 | syl3an1 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A .- B ) e. X ) |
| 30 | 1 5 4 7 8 | cphnmcl | |- ( ( W e. CPreHil /\ ( A .- B ) e. X ) -> ( N ` ( A .- B ) ) e. K ) |
| 31 | 17 29 30 | syl2anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( N ` ( A .- B ) ) e. K ) |
| 32 | 16 31 | sseldd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( N ` ( A .- B ) ) e. CC ) |
| 33 | 32 | sqcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .- B ) ) ^ 2 ) e. CC ) |
| 34 | 27 33 | subcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) e. CC ) |
| 35 | ax-icn | |- _i e. CC |
|
| 36 | 35 | a1i | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> _i e. CC ) |
| 37 | 17 20 | syl | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> W e. Grp ) |
| 38 | simp2 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 39 | cphlmod | |- ( W e. CPreHil -> W e. LMod ) |
|
| 40 | 39 | adantr | |- ( ( W e. CPreHil /\ _i e. K ) -> W e. LMod ) |
| 41 | 40 | 3ad2ant1 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> W e. LMod ) |
| 42 | simp1r | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> _i e. K ) |
|
| 43 | simp3 | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> B e. X ) |
|
| 44 | 1 7 3 8 | lmodvscl | |- ( ( W e. LMod /\ _i e. K /\ B e. X ) -> ( _i .x. B ) e. X ) |
| 45 | 41 42 43 44 | syl3anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i .x. B ) e. X ) |
| 46 | 1 2 | grpcl | |- ( ( W e. Grp /\ A e. X /\ ( _i .x. B ) e. X ) -> ( A .+ ( _i .x. B ) ) e. X ) |
| 47 | 37 38 45 46 | syl3anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A .+ ( _i .x. B ) ) e. X ) |
| 48 | 1 5 4 7 8 | cphnmcl | |- ( ( W e. CPreHil /\ ( A .+ ( _i .x. B ) ) e. X ) -> ( N ` ( A .+ ( _i .x. B ) ) ) e. K ) |
| 49 | 17 47 48 | syl2anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( N ` ( A .+ ( _i .x. B ) ) ) e. K ) |
| 50 | 16 49 | sseldd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( N ` ( A .+ ( _i .x. B ) ) ) e. CC ) |
| 51 | 50 | sqcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) e. CC ) |
| 52 | 1 6 | grpsubcl | |- ( ( W e. Grp /\ A e. X /\ ( _i .x. B ) e. X ) -> ( A .- ( _i .x. B ) ) e. X ) |
| 53 | 37 38 45 52 | syl3anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( A .- ( _i .x. B ) ) e. X ) |
| 54 | 1 5 4 7 8 | cphnmcl | |- ( ( W e. CPreHil /\ ( A .- ( _i .x. B ) ) e. X ) -> ( N ` ( A .- ( _i .x. B ) ) ) e. K ) |
| 55 | 17 53 54 | syl2anc | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( N ` ( A .- ( _i .x. B ) ) ) e. K ) |
| 56 | 16 55 | sseldd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( N ` ( A .- ( _i .x. B ) ) ) e. CC ) |
| 57 | 56 | sqcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) e. CC ) |
| 58 | 51 57 | subcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) e. CC ) |
| 59 | 36 58 | mulcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) e. CC ) |
| 60 | 34 59 | addcld | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) e. CC ) |
| 61 | 4cn | |- 4 e. CC |
|
| 62 | 61 | a1i | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> 4 e. CC ) |
| 63 | 4ne0 | |- 4 =/= 0 |
|
| 64 | 63 | a1i | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> 4 =/= 0 ) |
| 65 | 60 62 64 | divcan2d | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( 4 x. ( ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) / 4 ) ) = ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) ) |
| 66 | 10 65 | eqtrd | |- ( ( ( W e. CPreHil /\ _i e. K ) /\ A e. X /\ B e. X ) -> ( 4 x. ( A ., B ) ) = ( ( ( ( N ` ( A .+ B ) ) ^ 2 ) - ( ( N ` ( A .- B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A .+ ( _i .x. B ) ) ) ^ 2 ) - ( ( N ` ( A .- ( _i .x. B ) ) ) ^ 2 ) ) ) ) ) |