This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. Equation I4 of Ponnusamy p. 362. (Contributed by NM, 1-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmsq.v | |- V = ( Base ` W ) |
|
| nmsq.h | |- ., = ( .i ` W ) |
||
| nmsq.n | |- N = ( norm ` W ) |
||
| Assertion | nmsq | |- ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | |- V = ( Base ` W ) |
|
| 2 | nmsq.h | |- ., = ( .i ` W ) |
|
| 3 | nmsq.n | |- N = ( norm ` W ) |
|
| 4 | 1 2 3 | cphnm | |- ( ( W e. CPreHil /\ A e. V ) -> ( N ` A ) = ( sqrt ` ( A ., A ) ) ) |
| 5 | 4 | oveq1d | |- ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( ( sqrt ` ( A ., A ) ) ^ 2 ) ) |
| 6 | 1 2 | cphipcl | |- ( ( W e. CPreHil /\ A e. V /\ A e. V ) -> ( A ., A ) e. CC ) |
| 7 | 6 | 3anidm23 | |- ( ( W e. CPreHil /\ A e. V ) -> ( A ., A ) e. CC ) |
| 8 | 7 | sqsqrtd | |- ( ( W e. CPreHil /\ A e. V ) -> ( ( sqrt ` ( A ., A ) ) ^ 2 ) = ( A ., A ) ) |
| 9 | 5 8 | eqtrd | |- ( ( W e. CPreHil /\ A e. V ) -> ( ( N ` A ) ^ 2 ) = ( A ., A ) ) |