This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product subtraction. Complex version of ip2subdi . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | |- ., = ( .i ` W ) |
|
| cphipcj.v | |- V = ( Base ` W ) |
||
| cphsubdir.m | |- .- = ( -g ` W ) |
||
| cph2subdi.1 | |- ( ph -> W e. CPreHil ) |
||
| cph2subdi.2 | |- ( ph -> A e. V ) |
||
| cph2subdi.3 | |- ( ph -> B e. V ) |
||
| cph2subdi.4 | |- ( ph -> C e. V ) |
||
| cph2subdi.5 | |- ( ph -> D e. V ) |
||
| Assertion | cph2subdi | |- ( ph -> ( ( A .- B ) ., ( C .- D ) ) = ( ( ( A ., C ) + ( B ., D ) ) - ( ( A ., D ) + ( B ., C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | |- ., = ( .i ` W ) |
|
| 2 | cphipcj.v | |- V = ( Base ` W ) |
|
| 3 | cphsubdir.m | |- .- = ( -g ` W ) |
|
| 4 | cph2subdi.1 | |- ( ph -> W e. CPreHil ) |
|
| 5 | cph2subdi.2 | |- ( ph -> A e. V ) |
|
| 6 | cph2subdi.3 | |- ( ph -> B e. V ) |
|
| 7 | cph2subdi.4 | |- ( ph -> C e. V ) |
|
| 8 | cph2subdi.5 | |- ( ph -> D e. V ) |
|
| 9 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 10 | 4 9 | syl | |- ( ph -> W e. CMod ) |
| 11 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 12 | 11 | clmadd | |- ( W e. CMod -> + = ( +g ` ( Scalar ` W ) ) ) |
| 13 | 10 12 | syl | |- ( ph -> + = ( +g ` ( Scalar ` W ) ) ) |
| 14 | 13 | oveqd | |- ( ph -> ( ( A ., C ) + ( B ., D ) ) = ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ) |
| 15 | 13 | oveqd | |- ( ph -> ( ( A ., D ) + ( B ., C ) ) = ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) |
| 16 | 14 15 | oveq12d | |- ( ph -> ( ( ( A ., C ) + ( B ., D ) ) ( -g ` ( Scalar ` W ) ) ( ( A ., D ) + ( B ., C ) ) ) = ( ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ( -g ` ( Scalar ` W ) ) ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) ) |
| 17 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 18 | 4 17 | syl | |- ( ph -> W e. PreHil ) |
| 19 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 20 | 11 1 2 19 | ipcl | |- ( ( W e. PreHil /\ A e. V /\ C e. V ) -> ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
| 21 | 18 5 7 20 | syl3anc | |- ( ph -> ( A ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
| 22 | 11 1 2 19 | ipcl | |- ( ( W e. PreHil /\ B e. V /\ D e. V ) -> ( B ., D ) e. ( Base ` ( Scalar ` W ) ) ) |
| 23 | 18 6 8 22 | syl3anc | |- ( ph -> ( B ., D ) e. ( Base ` ( Scalar ` W ) ) ) |
| 24 | 11 19 | clmacl | |- ( ( W e. CMod /\ ( A ., C ) e. ( Base ` ( Scalar ` W ) ) /\ ( B ., D ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( A ., C ) + ( B ., D ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 25 | 10 21 23 24 | syl3anc | |- ( ph -> ( ( A ., C ) + ( B ., D ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 26 | 11 1 2 19 | ipcl | |- ( ( W e. PreHil /\ A e. V /\ D e. V ) -> ( A ., D ) e. ( Base ` ( Scalar ` W ) ) ) |
| 27 | 18 5 8 26 | syl3anc | |- ( ph -> ( A ., D ) e. ( Base ` ( Scalar ` W ) ) ) |
| 28 | 11 1 2 19 | ipcl | |- ( ( W e. PreHil /\ B e. V /\ C e. V ) -> ( B ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
| 29 | 18 6 7 28 | syl3anc | |- ( ph -> ( B ., C ) e. ( Base ` ( Scalar ` W ) ) ) |
| 30 | 11 19 | clmacl | |- ( ( W e. CMod /\ ( A ., D ) e. ( Base ` ( Scalar ` W ) ) /\ ( B ., C ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( A ., D ) + ( B ., C ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 31 | 10 27 29 30 | syl3anc | |- ( ph -> ( ( A ., D ) + ( B ., C ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 32 | 11 19 | clmsub | |- ( ( W e. CMod /\ ( ( A ., C ) + ( B ., D ) ) e. ( Base ` ( Scalar ` W ) ) /\ ( ( A ., D ) + ( B ., C ) ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( ( A ., C ) + ( B ., D ) ) - ( ( A ., D ) + ( B ., C ) ) ) = ( ( ( A ., C ) + ( B ., D ) ) ( -g ` ( Scalar ` W ) ) ( ( A ., D ) + ( B ., C ) ) ) ) |
| 33 | 10 25 31 32 | syl3anc | |- ( ph -> ( ( ( A ., C ) + ( B ., D ) ) - ( ( A ., D ) + ( B ., C ) ) ) = ( ( ( A ., C ) + ( B ., D ) ) ( -g ` ( Scalar ` W ) ) ( ( A ., D ) + ( B ., C ) ) ) ) |
| 34 | eqid | |- ( -g ` ( Scalar ` W ) ) = ( -g ` ( Scalar ` W ) ) |
|
| 35 | eqid | |- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
|
| 36 | 11 1 2 3 34 35 18 5 6 7 8 | ip2subdi | |- ( ph -> ( ( A .- B ) ., ( C .- D ) ) = ( ( ( A ., C ) ( +g ` ( Scalar ` W ) ) ( B ., D ) ) ( -g ` ( Scalar ` W ) ) ( ( A ., D ) ( +g ` ( Scalar ` W ) ) ( B ., C ) ) ) ) |
| 37 | 16 33 36 | 3eqtr4rd | |- ( ph -> ( ( A .- B ) ., ( C .- D ) ) = ( ( ( A ., C ) + ( B ., D ) ) - ( ( A ., D ) + ( B ., C ) ) ) ) |