This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprimeprodsq | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) -> A = ( ( A gcd C ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | |- ( A e. NN0 -> A e. ZZ ) |
|
| 2 | nn0z | |- ( C e. NN0 -> C e. ZZ ) |
|
| 3 | gcdcl | |- ( ( A e. ZZ /\ C e. ZZ ) -> ( A gcd C ) e. NN0 ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. NN0 /\ C e. NN0 ) -> ( A gcd C ) e. NN0 ) |
| 5 | 4 | 3adant2 | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( A gcd C ) e. NN0 ) |
| 6 | 5 | 3ad2ant1 | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( A gcd C ) e. NN0 ) |
| 7 | 6 | nn0cnd | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( A gcd C ) e. CC ) |
| 8 | 7 | sqvald | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( A gcd C ) ^ 2 ) = ( ( A gcd C ) x. ( A gcd C ) ) ) |
| 9 | simp13 | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> C e. NN0 ) |
|
| 10 | 9 | nn0cnd | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> C e. CC ) |
| 11 | nn0cn | |- ( A e. NN0 -> A e. CC ) |
|
| 12 | 11 | 3ad2ant1 | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> A e. CC ) |
| 13 | 12 | 3ad2ant1 | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> A e. CC ) |
| 14 | 10 13 | mulcomd | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( C x. A ) = ( A x. C ) ) |
| 15 | simpl3 | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> C e. NN0 ) |
|
| 16 | 15 | nn0cnd | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> C e. CC ) |
| 17 | 16 | sqvald | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( C ^ 2 ) = ( C x. C ) ) |
| 18 | 17 | eqeq1d | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) <-> ( C x. C ) = ( A x. B ) ) ) |
| 19 | 18 | biimp3a | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( C x. C ) = ( A x. B ) ) |
| 20 | 14 19 | oveq12d | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( C x. A ) gcd ( C x. C ) ) = ( ( A x. C ) gcd ( A x. B ) ) ) |
| 21 | simp11 | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> A e. NN0 ) |
|
| 22 | 21 | nn0zd | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> A e. ZZ ) |
| 23 | 9 | nn0zd | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> C e. ZZ ) |
| 24 | mulgcd | |- ( ( C e. NN0 /\ A e. ZZ /\ C e. ZZ ) -> ( ( C x. A ) gcd ( C x. C ) ) = ( C x. ( A gcd C ) ) ) |
|
| 25 | 9 22 23 24 | syl3anc | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( C x. A ) gcd ( C x. C ) ) = ( C x. ( A gcd C ) ) ) |
| 26 | simp12 | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> B e. ZZ ) |
|
| 27 | mulgcd | |- ( ( A e. NN0 /\ C e. ZZ /\ B e. ZZ ) -> ( ( A x. C ) gcd ( A x. B ) ) = ( A x. ( C gcd B ) ) ) |
|
| 28 | 21 23 26 27 | syl3anc | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( A x. C ) gcd ( A x. B ) ) = ( A x. ( C gcd B ) ) ) |
| 29 | 20 25 28 | 3eqtr3d | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( C x. ( A gcd C ) ) = ( A x. ( C gcd B ) ) ) |
| 30 | 29 | oveq2d | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( A x. ( A gcd C ) ) gcd ( C x. ( A gcd C ) ) ) = ( ( A x. ( A gcd C ) ) gcd ( A x. ( C gcd B ) ) ) ) |
| 31 | mulgcdr | |- ( ( A e. ZZ /\ C e. ZZ /\ ( A gcd C ) e. NN0 ) -> ( ( A x. ( A gcd C ) ) gcd ( C x. ( A gcd C ) ) ) = ( ( A gcd C ) x. ( A gcd C ) ) ) |
|
| 32 | 22 23 6 31 | syl3anc | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( A x. ( A gcd C ) ) gcd ( C x. ( A gcd C ) ) ) = ( ( A gcd C ) x. ( A gcd C ) ) ) |
| 33 | 6 | nn0zd | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( A gcd C ) e. ZZ ) |
| 34 | gcdcl | |- ( ( C e. ZZ /\ B e. ZZ ) -> ( C gcd B ) e. NN0 ) |
|
| 35 | 2 34 | sylan | |- ( ( C e. NN0 /\ B e. ZZ ) -> ( C gcd B ) e. NN0 ) |
| 36 | 35 | ancoms | |- ( ( B e. ZZ /\ C e. NN0 ) -> ( C gcd B ) e. NN0 ) |
| 37 | 36 | 3adant1 | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( C gcd B ) e. NN0 ) |
| 38 | 37 | 3ad2ant1 | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( C gcd B ) e. NN0 ) |
| 39 | 38 | nn0zd | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( C gcd B ) e. ZZ ) |
| 40 | mulgcd | |- ( ( A e. NN0 /\ ( A gcd C ) e. ZZ /\ ( C gcd B ) e. ZZ ) -> ( ( A x. ( A gcd C ) ) gcd ( A x. ( C gcd B ) ) ) = ( A x. ( ( A gcd C ) gcd ( C gcd B ) ) ) ) |
|
| 41 | 21 33 39 40 | syl3anc | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( A x. ( A gcd C ) ) gcd ( A x. ( C gcd B ) ) ) = ( A x. ( ( A gcd C ) gcd ( C gcd B ) ) ) ) |
| 42 | 30 32 41 | 3eqtr3d | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( ( A gcd C ) x. ( A gcd C ) ) = ( A x. ( ( A gcd C ) gcd ( C gcd B ) ) ) ) |
| 43 | 2 | 3ad2ant3 | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> C e. ZZ ) |
| 44 | gcdid | |- ( C e. ZZ -> ( C gcd C ) = ( abs ` C ) ) |
|
| 45 | 43 44 | syl | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( C gcd C ) = ( abs ` C ) ) |
| 46 | 45 | oveq1d | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( C gcd C ) gcd B ) = ( ( abs ` C ) gcd B ) ) |
| 47 | simp2 | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> B e. ZZ ) |
|
| 48 | gcdabs1 | |- ( ( C e. ZZ /\ B e. ZZ ) -> ( ( abs ` C ) gcd B ) = ( C gcd B ) ) |
|
| 49 | 43 47 48 | syl2anc | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( abs ` C ) gcd B ) = ( C gcd B ) ) |
| 50 | 46 49 | eqtrd | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( C gcd C ) gcd B ) = ( C gcd B ) ) |
| 51 | gcdass | |- ( ( C e. ZZ /\ C e. ZZ /\ B e. ZZ ) -> ( ( C gcd C ) gcd B ) = ( C gcd ( C gcd B ) ) ) |
|
| 52 | 43 43 47 51 | syl3anc | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( C gcd C ) gcd B ) = ( C gcd ( C gcd B ) ) ) |
| 53 | 43 47 | gcdcomd | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( C gcd B ) = ( B gcd C ) ) |
| 54 | 50 52 53 | 3eqtr3d | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( C gcd ( C gcd B ) ) = ( B gcd C ) ) |
| 55 | 54 | oveq2d | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( A gcd ( C gcd ( C gcd B ) ) ) = ( A gcd ( B gcd C ) ) ) |
| 56 | 1 | 3ad2ant1 | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> A e. ZZ ) |
| 57 | 37 | nn0zd | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( C gcd B ) e. ZZ ) |
| 58 | gcdass | |- ( ( A e. ZZ /\ C e. ZZ /\ ( C gcd B ) e. ZZ ) -> ( ( A gcd C ) gcd ( C gcd B ) ) = ( A gcd ( C gcd ( C gcd B ) ) ) ) |
|
| 59 | 56 43 57 58 | syl3anc | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( A gcd C ) gcd ( C gcd B ) ) = ( A gcd ( C gcd ( C gcd B ) ) ) ) |
| 60 | gcdass | |- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A gcd B ) gcd C ) = ( A gcd ( B gcd C ) ) ) |
|
| 61 | 56 47 43 60 | syl3anc | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( A gcd B ) gcd C ) = ( A gcd ( B gcd C ) ) ) |
| 62 | 55 59 61 | 3eqtr4d | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( A gcd C ) gcd ( C gcd B ) ) = ( ( A gcd B ) gcd C ) ) |
| 63 | 62 | eqeq1d | |- ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) -> ( ( ( A gcd C ) gcd ( C gcd B ) ) = 1 <-> ( ( A gcd B ) gcd C ) = 1 ) ) |
| 64 | 63 | biimpar | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( A gcd C ) gcd ( C gcd B ) ) = 1 ) |
| 65 | 64 | oveq2d | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( A x. ( ( A gcd C ) gcd ( C gcd B ) ) ) = ( A x. 1 ) ) |
| 66 | 65 | 3adant3 | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( A x. ( ( A gcd C ) gcd ( C gcd B ) ) ) = ( A x. 1 ) ) |
| 67 | 13 | mulridd | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( A x. 1 ) = A ) |
| 68 | 66 67 | eqtrd | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> ( A x. ( ( A gcd C ) gcd ( C gcd B ) ) ) = A ) |
| 69 | 8 42 68 | 3eqtrrd | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 /\ ( C ^ 2 ) = ( A x. B ) ) -> A = ( ( A gcd C ) ^ 2 ) ) |
| 70 | 69 | 3expia | |- ( ( ( A e. NN0 /\ B e. ZZ /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) -> A = ( ( A gcd C ) ^ 2 ) ) ) |