This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for gcd operator. Theorem 1.4(b) in ApostolNT p. 16. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdass | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N gcd M ) gcd P ) = ( N gcd ( M gcd P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass | |- ( ( ( N = 0 /\ M = 0 ) /\ P = 0 ) <-> ( N = 0 /\ ( M = 0 /\ P = 0 ) ) ) |
|
| 2 | anass | |- ( ( ( x || N /\ x || M ) /\ x || P ) <-> ( x || N /\ ( x || M /\ x || P ) ) ) |
|
| 3 | 2 | rabbii | |- { x e. ZZ | ( ( x || N /\ x || M ) /\ x || P ) } = { x e. ZZ | ( x || N /\ ( x || M /\ x || P ) ) } |
| 4 | 3 | supeq1i | |- sup ( { x e. ZZ | ( ( x || N /\ x || M ) /\ x || P ) } , RR , < ) = sup ( { x e. ZZ | ( x || N /\ ( x || M /\ x || P ) ) } , RR , < ) |
| 5 | 1 4 | ifbieq2i | |- if ( ( ( N = 0 /\ M = 0 ) /\ P = 0 ) , 0 , sup ( { x e. ZZ | ( ( x || N /\ x || M ) /\ x || P ) } , RR , < ) ) = if ( ( N = 0 /\ ( M = 0 /\ P = 0 ) ) , 0 , sup ( { x e. ZZ | ( x || N /\ ( x || M /\ x || P ) ) } , RR , < ) ) |
| 6 | gcdcl | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd M ) e. NN0 ) |
|
| 7 | 6 | 3adant3 | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( N gcd M ) e. NN0 ) |
| 8 | 7 | nn0zd | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( N gcd M ) e. ZZ ) |
| 9 | simp3 | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> P e. ZZ ) |
|
| 10 | gcdval | |- ( ( ( N gcd M ) e. ZZ /\ P e. ZZ ) -> ( ( N gcd M ) gcd P ) = if ( ( ( N gcd M ) = 0 /\ P = 0 ) , 0 , sup ( { x e. ZZ | ( x || ( N gcd M ) /\ x || P ) } , RR , < ) ) ) |
|
| 11 | 8 9 10 | syl2anc | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N gcd M ) gcd P ) = if ( ( ( N gcd M ) = 0 /\ P = 0 ) , 0 , sup ( { x e. ZZ | ( x || ( N gcd M ) /\ x || P ) } , RR , < ) ) ) |
| 12 | gcdeq0 | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N gcd M ) = 0 <-> ( N = 0 /\ M = 0 ) ) ) |
|
| 13 | 12 | 3adant3 | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N gcd M ) = 0 <-> ( N = 0 /\ M = 0 ) ) ) |
| 14 | 13 | anbi1d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( ( N gcd M ) = 0 /\ P = 0 ) <-> ( ( N = 0 /\ M = 0 ) /\ P = 0 ) ) ) |
| 15 | 14 | bicomd | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( ( N = 0 /\ M = 0 ) /\ P = 0 ) <-> ( ( N gcd M ) = 0 /\ P = 0 ) ) ) |
| 16 | simpr | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. ZZ ) -> x e. ZZ ) |
|
| 17 | simpl1 | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. ZZ ) -> N e. ZZ ) |
|
| 18 | simpl2 | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. ZZ ) -> M e. ZZ ) |
|
| 19 | dvdsgcdb | |- ( ( x e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( ( x || N /\ x || M ) <-> x || ( N gcd M ) ) ) |
|
| 20 | 16 17 18 19 | syl3anc | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. ZZ ) -> ( ( x || N /\ x || M ) <-> x || ( N gcd M ) ) ) |
| 21 | 20 | anbi1d | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. ZZ ) -> ( ( ( x || N /\ x || M ) /\ x || P ) <-> ( x || ( N gcd M ) /\ x || P ) ) ) |
| 22 | 21 | rabbidva | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> { x e. ZZ | ( ( x || N /\ x || M ) /\ x || P ) } = { x e. ZZ | ( x || ( N gcd M ) /\ x || P ) } ) |
| 23 | 22 | supeq1d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> sup ( { x e. ZZ | ( ( x || N /\ x || M ) /\ x || P ) } , RR , < ) = sup ( { x e. ZZ | ( x || ( N gcd M ) /\ x || P ) } , RR , < ) ) |
| 24 | 15 23 | ifbieq2d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> if ( ( ( N = 0 /\ M = 0 ) /\ P = 0 ) , 0 , sup ( { x e. ZZ | ( ( x || N /\ x || M ) /\ x || P ) } , RR , < ) ) = if ( ( ( N gcd M ) = 0 /\ P = 0 ) , 0 , sup ( { x e. ZZ | ( x || ( N gcd M ) /\ x || P ) } , RR , < ) ) ) |
| 25 | 11 24 | eqtr4d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N gcd M ) gcd P ) = if ( ( ( N = 0 /\ M = 0 ) /\ P = 0 ) , 0 , sup ( { x e. ZZ | ( ( x || N /\ x || M ) /\ x || P ) } , RR , < ) ) ) |
| 26 | simp1 | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> N e. ZZ ) |
|
| 27 | gcdcl | |- ( ( M e. ZZ /\ P e. ZZ ) -> ( M gcd P ) e. NN0 ) |
|
| 28 | 27 | 3adant1 | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( M gcd P ) e. NN0 ) |
| 29 | 28 | nn0zd | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( M gcd P ) e. ZZ ) |
| 30 | gcdval | |- ( ( N e. ZZ /\ ( M gcd P ) e. ZZ ) -> ( N gcd ( M gcd P ) ) = if ( ( N = 0 /\ ( M gcd P ) = 0 ) , 0 , sup ( { x e. ZZ | ( x || N /\ x || ( M gcd P ) ) } , RR , < ) ) ) |
|
| 31 | 26 29 30 | syl2anc | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( N gcd ( M gcd P ) ) = if ( ( N = 0 /\ ( M gcd P ) = 0 ) , 0 , sup ( { x e. ZZ | ( x || N /\ x || ( M gcd P ) ) } , RR , < ) ) ) |
| 32 | gcdeq0 | |- ( ( M e. ZZ /\ P e. ZZ ) -> ( ( M gcd P ) = 0 <-> ( M = 0 /\ P = 0 ) ) ) |
|
| 33 | 32 | 3adant1 | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( M gcd P ) = 0 <-> ( M = 0 /\ P = 0 ) ) ) |
| 34 | 33 | anbi2d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N = 0 /\ ( M gcd P ) = 0 ) <-> ( N = 0 /\ ( M = 0 /\ P = 0 ) ) ) ) |
| 35 | 34 | bicomd | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N = 0 /\ ( M = 0 /\ P = 0 ) ) <-> ( N = 0 /\ ( M gcd P ) = 0 ) ) ) |
| 36 | simpl3 | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. ZZ ) -> P e. ZZ ) |
|
| 37 | dvdsgcdb | |- ( ( x e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( x || M /\ x || P ) <-> x || ( M gcd P ) ) ) |
|
| 38 | 16 18 36 37 | syl3anc | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. ZZ ) -> ( ( x || M /\ x || P ) <-> x || ( M gcd P ) ) ) |
| 39 | 38 | anbi2d | |- ( ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) /\ x e. ZZ ) -> ( ( x || N /\ ( x || M /\ x || P ) ) <-> ( x || N /\ x || ( M gcd P ) ) ) ) |
| 40 | 39 | rabbidva | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> { x e. ZZ | ( x || N /\ ( x || M /\ x || P ) ) } = { x e. ZZ | ( x || N /\ x || ( M gcd P ) ) } ) |
| 41 | 40 | supeq1d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> sup ( { x e. ZZ | ( x || N /\ ( x || M /\ x || P ) ) } , RR , < ) = sup ( { x e. ZZ | ( x || N /\ x || ( M gcd P ) ) } , RR , < ) ) |
| 42 | 35 41 | ifbieq2d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> if ( ( N = 0 /\ ( M = 0 /\ P = 0 ) ) , 0 , sup ( { x e. ZZ | ( x || N /\ ( x || M /\ x || P ) ) } , RR , < ) ) = if ( ( N = 0 /\ ( M gcd P ) = 0 ) , 0 , sup ( { x e. ZZ | ( x || N /\ x || ( M gcd P ) ) } , RR , < ) ) ) |
| 43 | 31 42 | eqtr4d | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( N gcd ( M gcd P ) ) = if ( ( N = 0 /\ ( M = 0 /\ P = 0 ) ) , 0 , sup ( { x e. ZZ | ( x || N /\ ( x || M /\ x || P ) ) } , RR , < ) ) ) |
| 44 | 5 25 43 | 3eqtr4a | |- ( ( N e. ZZ /\ M e. ZZ /\ P e. ZZ ) -> ( ( N gcd M ) gcd P ) = ( N gcd ( M gcd P ) ) ) |