This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: gcd of the absolute value of the first operator. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdabs1 | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( ( abs ` N ) = N -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) |
|
| 2 | 1 | a1i | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) = N -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) ) |
| 3 | neggcd | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( -u N gcd M ) = ( N gcd M ) ) |
|
| 4 | oveq1 | |- ( ( abs ` N ) = -u N -> ( ( abs ` N ) gcd M ) = ( -u N gcd M ) ) |
|
| 5 | 4 | eqeq1d | |- ( ( abs ` N ) = -u N -> ( ( ( abs ` N ) gcd M ) = ( N gcd M ) <-> ( -u N gcd M ) = ( N gcd M ) ) ) |
| 6 | 3 5 | syl5ibrcom | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) = -u N -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) ) |
| 7 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 8 | 7 | absord | |- ( N e. ZZ -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
| 9 | 8 | adantr | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
| 10 | 2 6 9 | mpjaod | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) |