This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprimeprodsq | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) → 𝐴 = ( ( 𝐴 gcd 𝐶 ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) | |
| 2 | nn0z | ⊢ ( 𝐶 ∈ ℕ0 → 𝐶 ∈ ℤ ) | |
| 3 | gcdcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 gcd 𝐶 ) ∈ ℕ0 ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 gcd 𝐶 ) ∈ ℕ0 ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 gcd 𝐶 ) ∈ ℕ0 ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐴 gcd 𝐶 ) ∈ ℕ0 ) |
| 7 | 6 | nn0cnd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐴 gcd 𝐶 ) ∈ ℂ ) |
| 8 | 7 | sqvald | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 gcd 𝐶 ) ↑ 2 ) = ( ( 𝐴 gcd 𝐶 ) · ( 𝐴 gcd 𝐶 ) ) ) |
| 9 | simp13 | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐶 ∈ ℕ0 ) | |
| 10 | 9 | nn0cnd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 11 | nn0cn | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) | |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℂ ) |
| 14 | 10 13 | mulcomd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐶 · 𝐴 ) = ( 𝐴 · 𝐶 ) ) |
| 15 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → 𝐶 ∈ ℕ0 ) | |
| 16 | 15 | nn0cnd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → 𝐶 ∈ ℂ ) |
| 17 | 16 | sqvald | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( 𝐶 ↑ 2 ) = ( 𝐶 · 𝐶 ) ) |
| 18 | 17 | eqeq1d | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ↔ ( 𝐶 · 𝐶 ) = ( 𝐴 · 𝐵 ) ) ) |
| 19 | 18 | biimp3a | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐶 · 𝐶 ) = ( 𝐴 · 𝐵 ) ) |
| 20 | 14 19 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐶 · 𝐴 ) gcd ( 𝐶 · 𝐶 ) ) = ( ( 𝐴 · 𝐶 ) gcd ( 𝐴 · 𝐵 ) ) ) |
| 21 | simp11 | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℕ0 ) | |
| 22 | 21 | nn0zd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐴 ∈ ℤ ) |
| 23 | 9 | nn0zd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐶 ∈ ℤ ) |
| 24 | mulgcd | ⊢ ( ( 𝐶 ∈ ℕ0 ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐶 · 𝐴 ) gcd ( 𝐶 · 𝐶 ) ) = ( 𝐶 · ( 𝐴 gcd 𝐶 ) ) ) | |
| 25 | 9 22 23 24 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐶 · 𝐴 ) gcd ( 𝐶 · 𝐶 ) ) = ( 𝐶 · ( 𝐴 gcd 𝐶 ) ) ) |
| 26 | simp12 | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐵 ∈ ℤ ) | |
| 27 | mulgcd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 · 𝐶 ) gcd ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( 𝐶 gcd 𝐵 ) ) ) | |
| 28 | 21 23 26 27 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 · 𝐶 ) gcd ( 𝐴 · 𝐵 ) ) = ( 𝐴 · ( 𝐶 gcd 𝐵 ) ) ) |
| 29 | 20 25 28 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐶 · ( 𝐴 gcd 𝐶 ) ) = ( 𝐴 · ( 𝐶 gcd 𝐵 ) ) ) |
| 30 | 29 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 · ( 𝐴 gcd 𝐶 ) ) gcd ( 𝐶 · ( 𝐴 gcd 𝐶 ) ) ) = ( ( 𝐴 · ( 𝐴 gcd 𝐶 ) ) gcd ( 𝐴 · ( 𝐶 gcd 𝐵 ) ) ) ) |
| 31 | mulgcdr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ ( 𝐴 gcd 𝐶 ) ∈ ℕ0 ) → ( ( 𝐴 · ( 𝐴 gcd 𝐶 ) ) gcd ( 𝐶 · ( 𝐴 gcd 𝐶 ) ) ) = ( ( 𝐴 gcd 𝐶 ) · ( 𝐴 gcd 𝐶 ) ) ) | |
| 32 | 22 23 6 31 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 · ( 𝐴 gcd 𝐶 ) ) gcd ( 𝐶 · ( 𝐴 gcd 𝐶 ) ) ) = ( ( 𝐴 gcd 𝐶 ) · ( 𝐴 gcd 𝐶 ) ) ) |
| 33 | 6 | nn0zd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐴 gcd 𝐶 ) ∈ ℤ ) |
| 34 | gcdcl | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐶 gcd 𝐵 ) ∈ ℕ0 ) | |
| 35 | 2 34 | sylan | ⊢ ( ( 𝐶 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ) → ( 𝐶 gcd 𝐵 ) ∈ ℕ0 ) |
| 36 | 35 | ancoms | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐶 gcd 𝐵 ) ∈ ℕ0 ) |
| 37 | 36 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐶 gcd 𝐵 ) ∈ ℕ0 ) |
| 38 | 37 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐶 gcd 𝐵 ) ∈ ℕ0 ) |
| 39 | 38 | nn0zd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐶 gcd 𝐵 ) ∈ ℤ ) |
| 40 | mulgcd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ ( 𝐴 gcd 𝐶 ) ∈ ℤ ∧ ( 𝐶 gcd 𝐵 ) ∈ ℤ ) → ( ( 𝐴 · ( 𝐴 gcd 𝐶 ) ) gcd ( 𝐴 · ( 𝐶 gcd 𝐵 ) ) ) = ( 𝐴 · ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) ) ) | |
| 41 | 21 33 39 40 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 · ( 𝐴 gcd 𝐶 ) ) gcd ( 𝐴 · ( 𝐶 gcd 𝐵 ) ) ) = ( 𝐴 · ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) ) ) |
| 42 | 30 32 41 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( ( 𝐴 gcd 𝐶 ) · ( 𝐴 gcd 𝐶 ) ) = ( 𝐴 · ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) ) ) |
| 43 | 2 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℤ ) |
| 44 | gcdid | ⊢ ( 𝐶 ∈ ℤ → ( 𝐶 gcd 𝐶 ) = ( abs ‘ 𝐶 ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐶 gcd 𝐶 ) = ( abs ‘ 𝐶 ) ) |
| 46 | 45 | oveq1d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 gcd 𝐶 ) gcd 𝐵 ) = ( ( abs ‘ 𝐶 ) gcd 𝐵 ) ) |
| 47 | simp2 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐵 ∈ ℤ ) | |
| 48 | gcdabs1 | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( abs ‘ 𝐶 ) gcd 𝐵 ) = ( 𝐶 gcd 𝐵 ) ) | |
| 49 | 43 47 48 | syl2anc | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( abs ‘ 𝐶 ) gcd 𝐵 ) = ( 𝐶 gcd 𝐵 ) ) |
| 50 | 46 49 | eqtrd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 gcd 𝐶 ) gcd 𝐵 ) = ( 𝐶 gcd 𝐵 ) ) |
| 51 | gcdass | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐶 gcd 𝐶 ) gcd 𝐵 ) = ( 𝐶 gcd ( 𝐶 gcd 𝐵 ) ) ) | |
| 52 | 43 43 47 51 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐶 gcd 𝐶 ) gcd 𝐵 ) = ( 𝐶 gcd ( 𝐶 gcd 𝐵 ) ) ) |
| 53 | 43 47 | gcdcomd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐶 gcd 𝐵 ) = ( 𝐵 gcd 𝐶 ) ) |
| 54 | 50 52 53 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐶 gcd ( 𝐶 gcd 𝐵 ) ) = ( 𝐵 gcd 𝐶 ) ) |
| 55 | 54 | oveq2d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 gcd ( 𝐶 gcd ( 𝐶 gcd 𝐵 ) ) ) = ( 𝐴 gcd ( 𝐵 gcd 𝐶 ) ) ) |
| 56 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → 𝐴 ∈ ℤ ) |
| 57 | 37 | nn0zd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐶 gcd 𝐵 ) ∈ ℤ ) |
| 58 | gcdass | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ ( 𝐶 gcd 𝐵 ) ∈ ℤ ) → ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) = ( 𝐴 gcd ( 𝐶 gcd ( 𝐶 gcd 𝐵 ) ) ) ) | |
| 59 | 56 43 57 58 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) = ( 𝐴 gcd ( 𝐶 gcd ( 𝐶 gcd 𝐵 ) ) ) ) |
| 60 | gcdass | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = ( 𝐴 gcd ( 𝐵 gcd 𝐶 ) ) ) | |
| 61 | 56 47 43 60 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = ( 𝐴 gcd ( 𝐵 gcd 𝐶 ) ) ) |
| 62 | 55 59 61 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) = ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) ) |
| 63 | 62 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) → ( ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) = 1 ↔ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) ) |
| 64 | 63 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) = 1 ) |
| 65 | 64 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( 𝐴 · ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) ) = ( 𝐴 · 1 ) ) |
| 66 | 65 | 3adant3 | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐴 · ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) ) = ( 𝐴 · 1 ) ) |
| 67 | 13 | mulridd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 68 | 66 67 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → ( 𝐴 · ( ( 𝐴 gcd 𝐶 ) gcd ( 𝐶 gcd 𝐵 ) ) ) = 𝐴 ) |
| 69 | 8 42 68 | 3eqtrrd | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ∧ ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) ) → 𝐴 = ( ( 𝐴 gcd 𝐶 ) ↑ 2 ) ) |
| 70 | 69 | 3expia | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0 ) ∧ ( ( 𝐴 gcd 𝐵 ) gcd 𝐶 ) = 1 ) → ( ( 𝐶 ↑ 2 ) = ( 𝐴 · 𝐵 ) → 𝐴 = ( ( 𝐴 gcd 𝐶 ) ↑ 2 ) ) ) |