This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coprimeprodsq2 | |- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) -> B = ( ( B gcd C ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 2 | nn0cn | |- ( B e. NN0 -> B e. CC ) |
|
| 3 | mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( A x. B ) = ( B x. A ) ) |
| 5 | 4 | 3adant3 | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) -> ( A x. B ) = ( B x. A ) ) |
| 6 | 5 | adantr | |- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( A x. B ) = ( B x. A ) ) |
| 7 | 6 | eqeq2d | |- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) <-> ( C ^ 2 ) = ( B x. A ) ) ) |
| 8 | simpl2 | |- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> B e. NN0 ) |
|
| 9 | simpl1 | |- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> A e. ZZ ) |
|
| 10 | simpl3 | |- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> C e. NN0 ) |
|
| 11 | nn0z | |- ( B e. NN0 -> B e. ZZ ) |
|
| 12 | gcdcom | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) = ( B gcd A ) ) |
|
| 13 | 12 | oveq1d | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) gcd C ) = ( ( B gcd A ) gcd C ) ) |
| 14 | 13 | eqeq1d | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A gcd B ) gcd C ) = 1 <-> ( ( B gcd A ) gcd C ) = 1 ) ) |
| 15 | 11 14 | sylan2 | |- ( ( A e. ZZ /\ B e. NN0 ) -> ( ( ( A gcd B ) gcd C ) = 1 <-> ( ( B gcd A ) gcd C ) = 1 ) ) |
| 16 | 15 | 3adant3 | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) -> ( ( ( A gcd B ) gcd C ) = 1 <-> ( ( B gcd A ) gcd C ) = 1 ) ) |
| 17 | 16 | biimpa | |- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( B gcd A ) gcd C ) = 1 ) |
| 18 | coprimeprodsq | |- ( ( ( B e. NN0 /\ A e. ZZ /\ C e. NN0 ) /\ ( ( B gcd A ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( B x. A ) -> B = ( ( B gcd C ) ^ 2 ) ) ) |
|
| 19 | 8 9 10 17 18 | syl31anc | |- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( B x. A ) -> B = ( ( B gcd C ) ^ 2 ) ) ) |
| 20 | 7 19 | sylbid | |- ( ( ( A e. ZZ /\ B e. NN0 /\ C e. NN0 ) /\ ( ( A gcd B ) gcd C ) = 1 ) -> ( ( C ^ 2 ) = ( A x. B ) -> B = ( ( B gcd C ) ^ 2 ) ) ) |