This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplmon2.p | |- P = ( I mPoly R ) |
|
| mplmon2.v | |- .x. = ( .s ` P ) |
||
| mplmon2.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| mplmon2.o | |- .1. = ( 1r ` R ) |
||
| mplmon2.z | |- .0. = ( 0g ` R ) |
||
| mplmon2.b | |- B = ( Base ` R ) |
||
| mplmon2.i | |- ( ph -> I e. W ) |
||
| mplmon2.r | |- ( ph -> R e. Ring ) |
||
| mplmon2.k | |- ( ph -> K e. D ) |
||
| mplmon2.x | |- ( ph -> X e. B ) |
||
| Assertion | mplmon2 | |- ( ph -> ( X .x. ( y e. D |-> if ( y = K , .1. , .0. ) ) ) = ( y e. D |-> if ( y = K , X , .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon2.p | |- P = ( I mPoly R ) |
|
| 2 | mplmon2.v | |- .x. = ( .s ` P ) |
|
| 3 | mplmon2.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 4 | mplmon2.o | |- .1. = ( 1r ` R ) |
|
| 5 | mplmon2.z | |- .0. = ( 0g ` R ) |
|
| 6 | mplmon2.b | |- B = ( Base ` R ) |
|
| 7 | mplmon2.i | |- ( ph -> I e. W ) |
|
| 8 | mplmon2.r | |- ( ph -> R e. Ring ) |
|
| 9 | mplmon2.k | |- ( ph -> K e. D ) |
|
| 10 | mplmon2.x | |- ( ph -> X e. B ) |
|
| 11 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 12 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 13 | 1 11 5 4 3 7 8 9 | mplmon | |- ( ph -> ( y e. D |-> if ( y = K , .1. , .0. ) ) e. ( Base ` P ) ) |
| 14 | 1 2 6 11 12 3 10 13 | mplvsca | |- ( ph -> ( X .x. ( y e. D |-> if ( y = K , .1. , .0. ) ) ) = ( ( D X. { X } ) oF ( .r ` R ) ( y e. D |-> if ( y = K , .1. , .0. ) ) ) ) |
| 15 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 16 | 3 15 | rabex2 | |- D e. _V |
| 17 | 16 | a1i | |- ( ph -> D e. _V ) |
| 18 | 10 | adantr | |- ( ( ph /\ y e. D ) -> X e. B ) |
| 19 | 4 | fvexi | |- .1. e. _V |
| 20 | 5 | fvexi | |- .0. e. _V |
| 21 | 19 20 | ifex | |- if ( y = K , .1. , .0. ) e. _V |
| 22 | 21 | a1i | |- ( ( ph /\ y e. D ) -> if ( y = K , .1. , .0. ) e. _V ) |
| 23 | fconstmpt | |- ( D X. { X } ) = ( y e. D |-> X ) |
|
| 24 | 23 | a1i | |- ( ph -> ( D X. { X } ) = ( y e. D |-> X ) ) |
| 25 | eqidd | |- ( ph -> ( y e. D |-> if ( y = K , .1. , .0. ) ) = ( y e. D |-> if ( y = K , .1. , .0. ) ) ) |
|
| 26 | 17 18 22 24 25 | offval2 | |- ( ph -> ( ( D X. { X } ) oF ( .r ` R ) ( y e. D |-> if ( y = K , .1. , .0. ) ) ) = ( y e. D |-> ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) ) ) |
| 27 | oveq2 | |- ( .1. = if ( y = K , .1. , .0. ) -> ( X ( .r ` R ) .1. ) = ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) ) |
|
| 28 | 27 | eqeq1d | |- ( .1. = if ( y = K , .1. , .0. ) -> ( ( X ( .r ` R ) .1. ) = if ( y = K , X , .0. ) <-> ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) = if ( y = K , X , .0. ) ) ) |
| 29 | oveq2 | |- ( .0. = if ( y = K , .1. , .0. ) -> ( X ( .r ` R ) .0. ) = ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) ) |
|
| 30 | 29 | eqeq1d | |- ( .0. = if ( y = K , .1. , .0. ) -> ( ( X ( .r ` R ) .0. ) = if ( y = K , X , .0. ) <-> ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) = if ( y = K , X , .0. ) ) ) |
| 31 | 6 12 4 | ringridm | |- ( ( R e. Ring /\ X e. B ) -> ( X ( .r ` R ) .1. ) = X ) |
| 32 | 8 10 31 | syl2anc | |- ( ph -> ( X ( .r ` R ) .1. ) = X ) |
| 33 | iftrue | |- ( y = K -> if ( y = K , X , .0. ) = X ) |
|
| 34 | 33 | eqcomd | |- ( y = K -> X = if ( y = K , X , .0. ) ) |
| 35 | 32 34 | sylan9eq | |- ( ( ph /\ y = K ) -> ( X ( .r ` R ) .1. ) = if ( y = K , X , .0. ) ) |
| 36 | 6 12 5 | ringrz | |- ( ( R e. Ring /\ X e. B ) -> ( X ( .r ` R ) .0. ) = .0. ) |
| 37 | 8 10 36 | syl2anc | |- ( ph -> ( X ( .r ` R ) .0. ) = .0. ) |
| 38 | iffalse | |- ( -. y = K -> if ( y = K , X , .0. ) = .0. ) |
|
| 39 | 38 | eqcomd | |- ( -. y = K -> .0. = if ( y = K , X , .0. ) ) |
| 40 | 37 39 | sylan9eq | |- ( ( ph /\ -. y = K ) -> ( X ( .r ` R ) .0. ) = if ( y = K , X , .0. ) ) |
| 41 | 28 30 35 40 | ifbothda | |- ( ph -> ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) = if ( y = K , X , .0. ) ) |
| 42 | 41 | mpteq2dv | |- ( ph -> ( y e. D |-> ( X ( .r ` R ) if ( y = K , .1. , .0. ) ) ) = ( y e. D |-> if ( y = K , X , .0. ) ) ) |
| 43 | 14 26 42 | 3eqtrd | |- ( ph -> ( X .x. ( y e. D |-> if ( y = K , .1. , .0. ) ) ) = ( y e. D |-> if ( y = K , X , .0. ) ) ) |