This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of finite bags on 1o is just the set of all functions from 1o to NN0 . (Contributed by Mario Carneiro, 9-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psr1baslem | |- ( NN0 ^m 1o ) = { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabid2 | |- ( ( NN0 ^m 1o ) = { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } <-> A. f e. ( NN0 ^m 1o ) ( `' f " NN ) e. Fin ) |
|
| 2 | df1o2 | |- 1o = { (/) } |
|
| 3 | snfi | |- { (/) } e. Fin |
|
| 4 | 2 3 | eqeltri | |- 1o e. Fin |
| 5 | cnvimass | |- ( `' f " NN ) C_ dom f |
|
| 6 | elmapi | |- ( f e. ( NN0 ^m 1o ) -> f : 1o --> NN0 ) |
|
| 7 | 5 6 | fssdm | |- ( f e. ( NN0 ^m 1o ) -> ( `' f " NN ) C_ 1o ) |
| 8 | ssfi | |- ( ( 1o e. Fin /\ ( `' f " NN ) C_ 1o ) -> ( `' f " NN ) e. Fin ) |
|
| 9 | 4 7 8 | sylancr | |- ( f e. ( NN0 ^m 1o ) -> ( `' f " NN ) e. Fin ) |
| 10 | 1 9 | mprgbir | |- ( NN0 ^m 1o ) = { f e. ( NN0 ^m 1o ) | ( `' f " NN ) e. Fin } |