This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two structures with the same group-nature have the same group multiple function. K is expected to either be _V (when strong equality is available) or B (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgpropd.m | |- .x. = ( .g ` G ) |
|
| mulgpropd.n | |- .X. = ( .g ` H ) |
||
| mulgpropd.b1 | |- ( ph -> B = ( Base ` G ) ) |
||
| mulgpropd.b2 | |- ( ph -> B = ( Base ` H ) ) |
||
| mulgpropd.i | |- ( ph -> B C_ K ) |
||
| mulgpropd.k | |- ( ( ph /\ ( x e. K /\ y e. K ) ) -> ( x ( +g ` G ) y ) e. K ) |
||
| mulgpropd.e | |- ( ( ph /\ ( x e. K /\ y e. K ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
||
| Assertion | mulgpropd | |- ( ph -> .x. = .X. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgpropd.m | |- .x. = ( .g ` G ) |
|
| 2 | mulgpropd.n | |- .X. = ( .g ` H ) |
|
| 3 | mulgpropd.b1 | |- ( ph -> B = ( Base ` G ) ) |
|
| 4 | mulgpropd.b2 | |- ( ph -> B = ( Base ` H ) ) |
|
| 5 | mulgpropd.i | |- ( ph -> B C_ K ) |
|
| 6 | mulgpropd.k | |- ( ( ph /\ ( x e. K /\ y e. K ) ) -> ( x ( +g ` G ) y ) e. K ) |
|
| 7 | mulgpropd.e | |- ( ( ph /\ ( x e. K /\ y e. K ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
|
| 8 | ssel | |- ( B C_ K -> ( x e. B -> x e. K ) ) |
|
| 9 | ssel | |- ( B C_ K -> ( y e. B -> y e. K ) ) |
|
| 10 | 8 9 | anim12d | |- ( B C_ K -> ( ( x e. B /\ y e. B ) -> ( x e. K /\ y e. K ) ) ) |
| 11 | 5 10 | syl | |- ( ph -> ( ( x e. B /\ y e. B ) -> ( x e. K /\ y e. K ) ) ) |
| 12 | 11 | imp | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x e. K /\ y e. K ) ) |
| 13 | 12 7 | syldan | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 14 | 3 4 13 | grpidpropd | |- ( ph -> ( 0g ` G ) = ( 0g ` H ) ) |
| 15 | 14 | 3ad2ant1 | |- ( ( ph /\ a e. ZZ /\ b e. B ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 16 | 1zzd | |- ( ( ph /\ a e. ZZ /\ b e. B ) -> 1 e. ZZ ) |
|
| 17 | vex | |- b e. _V |
|
| 18 | 17 | fvconst2 | |- ( x e. NN -> ( ( NN X. { b } ) ` x ) = b ) |
| 19 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 20 | 19 | eqcomi | |- ( ZZ>= ` 1 ) = NN |
| 21 | 18 20 | eleq2s | |- ( x e. ( ZZ>= ` 1 ) -> ( ( NN X. { b } ) ` x ) = b ) |
| 22 | 21 | adantl | |- ( ( ( ph /\ a e. ZZ /\ b e. B ) /\ x e. ( ZZ>= ` 1 ) ) -> ( ( NN X. { b } ) ` x ) = b ) |
| 23 | 5 | 3ad2ant1 | |- ( ( ph /\ a e. ZZ /\ b e. B ) -> B C_ K ) |
| 24 | simp3 | |- ( ( ph /\ a e. ZZ /\ b e. B ) -> b e. B ) |
|
| 25 | 23 24 | sseldd | |- ( ( ph /\ a e. ZZ /\ b e. B ) -> b e. K ) |
| 26 | 25 | adantr | |- ( ( ( ph /\ a e. ZZ /\ b e. B ) /\ x e. ( ZZ>= ` 1 ) ) -> b e. K ) |
| 27 | 22 26 | eqeltrd | |- ( ( ( ph /\ a e. ZZ /\ b e. B ) /\ x e. ( ZZ>= ` 1 ) ) -> ( ( NN X. { b } ) ` x ) e. K ) |
| 28 | 6 | 3ad2antl1 | |- ( ( ( ph /\ a e. ZZ /\ b e. B ) /\ ( x e. K /\ y e. K ) ) -> ( x ( +g ` G ) y ) e. K ) |
| 29 | 7 | 3ad2antl1 | |- ( ( ( ph /\ a e. ZZ /\ b e. B ) /\ ( x e. K /\ y e. K ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 30 | 16 27 28 29 | seqfeq3 | |- ( ( ph /\ a e. ZZ /\ b e. B ) -> seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) = seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ) |
| 31 | 30 | fveq1d | |- ( ( ph /\ a e. ZZ /\ b e. B ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) = ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) ) |
| 32 | 3 4 13 | grpinvpropd | |- ( ph -> ( invg ` G ) = ( invg ` H ) ) |
| 33 | 32 | 3ad2ant1 | |- ( ( ph /\ a e. ZZ /\ b e. B ) -> ( invg ` G ) = ( invg ` H ) ) |
| 34 | 30 | fveq1d | |- ( ( ph /\ a e. ZZ /\ b e. B ) -> ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) = ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) |
| 35 | 33 34 | fveq12d | |- ( ( ph /\ a e. ZZ /\ b e. B ) -> ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) = ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) |
| 36 | 31 35 | ifeq12d | |- ( ( ph /\ a e. ZZ /\ b e. B ) -> if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) = if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) |
| 37 | 15 36 | ifeq12d | |- ( ( ph /\ a e. ZZ /\ b e. B ) -> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) = if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) |
| 38 | 37 | mpoeq3dva | |- ( ph -> ( a e. ZZ , b e. B |-> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) = ( a e. ZZ , b e. B |-> if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) ) |
| 39 | eqidd | |- ( ph -> ZZ = ZZ ) |
|
| 40 | eqidd | |- ( ph -> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) = if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) |
|
| 41 | 39 3 40 | mpoeq123dv | |- ( ph -> ( a e. ZZ , b e. B |-> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) = ( a e. ZZ , b e. ( Base ` G ) |-> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) ) |
| 42 | eqidd | |- ( ph -> if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) = if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) |
|
| 43 | 39 4 42 | mpoeq123dv | |- ( ph -> ( a e. ZZ , b e. B |-> if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) = ( a e. ZZ , b e. ( Base ` H ) |-> if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) ) |
| 44 | 38 41 43 | 3eqtr3d | |- ( ph -> ( a e. ZZ , b e. ( Base ` G ) |-> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) = ( a e. ZZ , b e. ( Base ` H ) |-> if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) ) |
| 45 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 46 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 47 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 48 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 49 | 45 46 47 48 1 | mulgfval | |- .x. = ( a e. ZZ , b e. ( Base ` G ) |-> if ( a = 0 , ( 0g ` G ) , if ( 0 < a , ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` G ) ` ( seq 1 ( ( +g ` G ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) |
| 50 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 51 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 52 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 53 | eqid | |- ( invg ` H ) = ( invg ` H ) |
|
| 54 | 50 51 52 53 2 | mulgfval | |- .X. = ( a e. ZZ , b e. ( Base ` H ) |-> if ( a = 0 , ( 0g ` H ) , if ( 0 < a , ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` a ) , ( ( invg ` H ) ` ( seq 1 ( ( +g ` H ) , ( NN X. { b } ) ) ` -u a ) ) ) ) ) |
| 55 | 44 49 54 | 3eqtr4g | |- ( ph -> .x. = .X. ) |