This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnflddiv as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 2-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnflddivOLD | |- / = ( /r ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnring | |- CCfld e. Ring |
|
| 2 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 3 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 4 | cndrng | |- CCfld e. DivRing |
|
| 5 | 2 3 4 | drngui | |- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 6 | eqid | |- ( /r ` CCfld ) = ( /r ` CCfld ) |
|
| 7 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 8 | 2 5 6 7 | dvrcan1 | |- ( ( CCfld e. Ring /\ x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) x. y ) = x ) |
| 9 | 1 8 | mp3an1 | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) x. y ) = x ) |
| 10 | 9 | oveq1d | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( ( x ( /r ` CCfld ) y ) x. y ) / y ) = ( x / y ) ) |
| 11 | 2 5 6 | dvrcl | |- ( ( CCfld e. Ring /\ x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) e. CC ) |
| 12 | 1 11 | mp3an1 | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) e. CC ) |
| 13 | simpr | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> y e. ( CC \ { 0 } ) ) |
|
| 14 | eldifsn | |- ( y e. ( CC \ { 0 } ) <-> ( y e. CC /\ y =/= 0 ) ) |
|
| 15 | 13 14 | sylib | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( y e. CC /\ y =/= 0 ) ) |
| 16 | 15 | simpld | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> y e. CC ) |
| 17 | 15 | simprd | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> y =/= 0 ) |
| 18 | 12 16 17 | divcan4d | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( ( x ( /r ` CCfld ) y ) x. y ) / y ) = ( x ( /r ` CCfld ) y ) ) |
| 19 | 10 18 | eqtr3d | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x / y ) = ( x ( /r ` CCfld ) y ) ) |
| 20 | simpl | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> x e. CC ) |
|
| 21 | divval | |- ( ( x e. CC /\ y e. CC /\ y =/= 0 ) -> ( x / y ) = ( iota_ z e. CC ( y x. z ) = x ) ) |
|
| 22 | 20 16 17 21 | syl3anc | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x / y ) = ( iota_ z e. CC ( y x. z ) = x ) ) |
| 23 | 19 22 | eqtr3d | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) = ( iota_ z e. CC ( y x. z ) = x ) ) |
| 24 | eqid | |- ( invr ` CCfld ) = ( invr ` CCfld ) |
|
| 25 | 2 7 5 24 6 | dvrval | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) = ( x x. ( ( invr ` CCfld ) ` y ) ) ) |
| 26 | 23 25 | eqtr3d | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( iota_ z e. CC ( y x. z ) = x ) = ( x x. ( ( invr ` CCfld ) ` y ) ) ) |
| 27 | 26 | mpoeq3ia | |- ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( x x. ( ( invr ` CCfld ) ` y ) ) ) |
| 28 | df-div | |- / = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) |
|
| 29 | 2 7 5 24 6 | dvrfval | |- ( /r ` CCfld ) = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( x x. ( ( invr ` CCfld ) ` y ) ) ) |
| 30 | 27 28 29 | 3eqtr4i | |- / = ( /r ` CCfld ) |