This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of division: if A and B are complex numbers with B nonzero, then ( A / B ) is the (unique) complex number such that ( B x. x ) = A . (Contributed by NM, 8-May-1999) (Revised by Mario Carneiro, 17-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divval | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn | |- ( B e. ( CC \ { 0 } ) <-> ( B e. CC /\ B =/= 0 ) ) |
|
| 2 | eqeq2 | |- ( z = A -> ( ( y x. x ) = z <-> ( y x. x ) = A ) ) |
|
| 3 | 2 | riotabidv | |- ( z = A -> ( iota_ x e. CC ( y x. x ) = z ) = ( iota_ x e. CC ( y x. x ) = A ) ) |
| 4 | oveq1 | |- ( y = B -> ( y x. x ) = ( B x. x ) ) |
|
| 5 | 4 | eqeq1d | |- ( y = B -> ( ( y x. x ) = A <-> ( B x. x ) = A ) ) |
| 6 | 5 | riotabidv | |- ( y = B -> ( iota_ x e. CC ( y x. x ) = A ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
| 7 | df-div | |- / = ( z e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ x e. CC ( y x. x ) = z ) ) |
|
| 8 | riotaex | |- ( iota_ x e. CC ( B x. x ) = A ) e. _V |
|
| 9 | 3 6 7 8 | ovmpo | |- ( ( A e. CC /\ B e. ( CC \ { 0 } ) ) -> ( A / B ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
| 10 | 1 9 | sylan2br | |- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( A / B ) = ( iota_ x e. CC ( B x. x ) = A ) ) |
| 11 | 10 | 3impb | |- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( A / B ) = ( iota_ x e. CC ( B x. x ) = A ) ) |