This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnflddiv as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 2-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnflddivOLD | ⊢ / = ( /r ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnring | ⊢ ℂfld ∈ Ring | |
| 2 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 3 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 4 | cndrng | ⊢ ℂfld ∈ DivRing | |
| 5 | 2 3 4 | drngui | ⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 6 | eqid | ⊢ ( /r ‘ ℂfld ) = ( /r ‘ ℂfld ) | |
| 7 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 8 | 2 5 6 7 | dvrcan1 | ⊢ ( ( ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) · 𝑦 ) = 𝑥 ) |
| 9 | 1 8 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) · 𝑦 ) = 𝑥 ) |
| 10 | 9 | oveq1d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) · 𝑦 ) / 𝑦 ) = ( 𝑥 / 𝑦 ) ) |
| 11 | 2 5 6 | dvrcl | ⊢ ( ( ℂfld ∈ Ring ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ∈ ℂ ) |
| 12 | 1 11 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ∈ ℂ ) |
| 13 | simpr | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ( ℂ ∖ { 0 } ) ) | |
| 14 | eldifsn | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) | |
| 15 | 13 14 | sylib | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
| 16 | 15 | simpld | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ∈ ℂ ) |
| 17 | 15 | simprd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑦 ≠ 0 ) |
| 18 | 12 16 17 | divcan4d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) · 𝑦 ) / 𝑦 ) = ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ) |
| 19 | 10 18 | eqtr3d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 / 𝑦 ) = ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) ) |
| 20 | simpl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → 𝑥 ∈ ℂ ) | |
| 21 | divval | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( 𝑥 / 𝑦 ) = ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) | |
| 22 | 20 16 17 21 | syl3anc | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 / 𝑦 ) = ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) |
| 23 | 19 22 | eqtr3d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) = ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) |
| 24 | eqid | ⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) | |
| 25 | 2 7 5 24 6 | dvrval | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑥 ( /r ‘ ℂfld ) 𝑦 ) = ( 𝑥 · ( ( invr ‘ ℂfld ) ‘ 𝑦 ) ) ) |
| 26 | 23 25 | eqtr3d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) → ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) = ( 𝑥 · ( ( invr ‘ ℂfld ) ‘ 𝑦 ) ) ) |
| 27 | 26 | mpoeq3ia | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · ( ( invr ‘ ℂfld ) ‘ 𝑦 ) ) ) |
| 28 | df-div | ⊢ / = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑧 ∈ ℂ ( 𝑦 · 𝑧 ) = 𝑥 ) ) | |
| 29 | 2 7 5 24 6 | dvrfval | ⊢ ( /r ‘ ℂfld ) = ( 𝑥 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( 𝑥 · ( ( invr ‘ ℂfld ) ‘ 𝑦 ) ) ) |
| 30 | 27 28 29 | 3eqtr4i | ⊢ / = ( /r ‘ ℂfld ) |