This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014) (Revised by Mario Carneiro, 2-Dec-2014) (Proof shortened by AV, 2-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrval.b | |- B = ( Base ` R ) |
|
| dvrval.t | |- .x. = ( .r ` R ) |
||
| dvrval.u | |- U = ( Unit ` R ) |
||
| dvrval.i | |- I = ( invr ` R ) |
||
| dvrval.d | |- ./ = ( /r ` R ) |
||
| Assertion | dvrfval | |- ./ = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrval.b | |- B = ( Base ` R ) |
|
| 2 | dvrval.t | |- .x. = ( .r ` R ) |
|
| 3 | dvrval.u | |- U = ( Unit ` R ) |
|
| 4 | dvrval.i | |- I = ( invr ` R ) |
|
| 5 | dvrval.d | |- ./ = ( /r ` R ) |
|
| 6 | fveq2 | |- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( r = R -> ( Base ` r ) = B ) |
| 8 | fveq2 | |- ( r = R -> ( Unit ` r ) = ( Unit ` R ) ) |
|
| 9 | 8 3 | eqtr4di | |- ( r = R -> ( Unit ` r ) = U ) |
| 10 | fveq2 | |- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
|
| 11 | 10 2 | eqtr4di | |- ( r = R -> ( .r ` r ) = .x. ) |
| 12 | eqidd | |- ( r = R -> x = x ) |
|
| 13 | fveq2 | |- ( r = R -> ( invr ` r ) = ( invr ` R ) ) |
|
| 14 | 13 4 | eqtr4di | |- ( r = R -> ( invr ` r ) = I ) |
| 15 | 14 | fveq1d | |- ( r = R -> ( ( invr ` r ) ` y ) = ( I ` y ) ) |
| 16 | 11 12 15 | oveq123d | |- ( r = R -> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) = ( x .x. ( I ` y ) ) ) |
| 17 | 7 9 16 | mpoeq123dv | |- ( r = R -> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) ) |
| 18 | df-dvr | |- /r = ( r e. _V |-> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) ) |
|
| 19 | 1 | fvexi | |- B e. _V |
| 20 | 3 | fvexi | |- U e. _V |
| 21 | 19 20 | mpoex | |- ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) e. _V |
| 22 | 17 18 21 | fvmpt | |- ( R e. _V -> ( /r ` R ) = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) ) |
| 23 | fvprc | |- ( -. R e. _V -> ( /r ` R ) = (/) ) |
|
| 24 | fvprc | |- ( -. R e. _V -> ( Base ` R ) = (/) ) |
|
| 25 | 1 24 | eqtrid | |- ( -. R e. _V -> B = (/) ) |
| 26 | 25 | orcd | |- ( -. R e. _V -> ( B = (/) \/ U = (/) ) ) |
| 27 | 0mpo0 | |- ( ( B = (/) \/ U = (/) ) -> ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) = (/) ) |
|
| 28 | 26 27 | syl | |- ( -. R e. _V -> ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) = (/) ) |
| 29 | 23 28 | eqtr4d | |- ( -. R e. _V -> ( /r ` R ) = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) ) |
| 30 | 22 29 | pm2.61i | |- ( /r ` R ) = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) |
| 31 | 5 30 | eqtri | |- ./ = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) |