This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The division operation in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 2-Dec-2014) Avoid ax-mulf . (Revised by GG, 30-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnflddiv | |- / = ( /r ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnring | |- CCfld e. Ring |
|
| 2 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 3 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 4 | cndrng | |- CCfld e. DivRing |
|
| 5 | 2 3 4 | drngui | |- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
| 6 | eqid | |- ( /r ` CCfld ) = ( /r ` CCfld ) |
|
| 7 | 2 5 6 | dvrcl | |- ( ( CCfld e. Ring /\ x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) e. CC ) |
| 8 | 1 7 | mp3an1 | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) e. CC ) |
| 9 | difssd | |- ( x e. CC -> ( CC \ { 0 } ) C_ CC ) |
|
| 10 | 9 | sselda | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> y e. CC ) |
| 11 | ovmpot | |- ( ( ( x ( /r ` CCfld ) y ) e. CC /\ y e. CC ) -> ( ( x ( /r ` CCfld ) y ) ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( ( x ( /r ` CCfld ) y ) x. y ) ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( ( x ( /r ` CCfld ) y ) x. y ) ) |
| 13 | mpocnfldmul | |- ( u e. CC , v e. CC |-> ( u x. v ) ) = ( .r ` CCfld ) |
|
| 14 | 2 5 6 13 | dvrcan1 | |- ( ( CCfld e. Ring /\ x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = x ) |
| 15 | 1 14 | mp3an1 | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = x ) |
| 16 | 12 15 | eqtr3d | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( x ( /r ` CCfld ) y ) x. y ) = x ) |
| 17 | 16 | oveq1d | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( ( x ( /r ` CCfld ) y ) x. y ) / y ) = ( x / y ) ) |
| 18 | eldifsni | |- ( y e. ( CC \ { 0 } ) -> y =/= 0 ) |
|
| 19 | 18 | adantl | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> y =/= 0 ) |
| 20 | 8 10 19 | divcan4d | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( ( ( x ( /r ` CCfld ) y ) x. y ) / y ) = ( x ( /r ` CCfld ) y ) ) |
| 21 | 17 20 | eqtr3d | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x / y ) = ( x ( /r ` CCfld ) y ) ) |
| 22 | simpl | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> x e. CC ) |
|
| 23 | divval | |- ( ( x e. CC /\ y e. CC /\ y =/= 0 ) -> ( x / y ) = ( iota_ z e. CC ( y x. z ) = x ) ) |
|
| 24 | 22 10 19 23 | syl3anc | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x / y ) = ( iota_ z e. CC ( y x. z ) = x ) ) |
| 25 | 21 24 | eqtr3d | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) = ( iota_ z e. CC ( y x. z ) = x ) ) |
| 26 | eqid | |- ( .r ` CCfld ) = ( .r ` CCfld ) |
|
| 27 | eqid | |- ( invr ` CCfld ) = ( invr ` CCfld ) |
|
| 28 | 2 26 5 27 6 | dvrval | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( x ( /r ` CCfld ) y ) = ( x ( .r ` CCfld ) ( ( invr ` CCfld ) ` y ) ) ) |
| 29 | 25 28 | eqtr3d | |- ( ( x e. CC /\ y e. ( CC \ { 0 } ) ) -> ( iota_ z e. CC ( y x. z ) = x ) = ( x ( .r ` CCfld ) ( ( invr ` CCfld ) ` y ) ) ) |
| 30 | 29 | mpoeq3ia | |- ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( x ( .r ` CCfld ) ( ( invr ` CCfld ) ` y ) ) ) |
| 31 | df-div | |- / = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) |
|
| 32 | 2 26 5 27 6 | dvrfval | |- ( /r ` CCfld ) = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( x ( .r ` CCfld ) ( ( invr ` CCfld ) ` y ) ) ) |
| 33 | 30 31 32 | 3eqtr4i | |- / = ( /r ` CCfld ) |