This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication operation of the field of complex numbers. Version of cnfldmul using maps-to notation, which does not require ax-mulf . (Contributed by GG, 31-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpocnfldmul | |- ( x e. CC , y e. CC |-> ( x x. y ) ) = ( .r ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpomulex | |- ( x e. CC , y e. CC |-> ( x x. y ) ) e. _V |
|
| 2 | cnfldstr | |- CCfld Struct <. 1 , ; 1 3 >. |
|
| 3 | mulridx | |- .r = Slot ( .r ` ndx ) |
|
| 4 | snsstp3 | |- { <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } C_ { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } |
|
| 5 | ssun1 | |- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } C_ ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) |
|
| 6 | ssun1 | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) C_ ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 7 | df-cnfld | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 8 | 6 7 | sseqtrri | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) C_ CCfld |
| 9 | 5 8 | sstri | |- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } C_ CCfld |
| 10 | 4 9 | sstri | |- { <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } C_ CCfld |
| 11 | 2 3 10 | strfv | |- ( ( x e. CC , y e. CC |-> ( x x. y ) ) e. _V -> ( x e. CC , y e. CC |-> ( x x. y ) ) = ( .r ` CCfld ) ) |
| 12 | 1 11 | ax-mp | |- ( x e. CC , y e. CC |-> ( x x. y ) ) = ( .r ` CCfld ) |