This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4a for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 22-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clwlkclwwlklem2.f | |- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
|
| Assertion | clwlkclwwlklem2fv1 | |- ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> ( F ` I ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlklem2.f | |- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
|
| 2 | breq1 | |- ( x = I -> ( x < ( ( # ` P ) - 2 ) <-> I < ( ( # ` P ) - 2 ) ) ) |
|
| 3 | fveq2 | |- ( x = I -> ( P ` x ) = ( P ` I ) ) |
|
| 4 | fvoveq1 | |- ( x = I -> ( P ` ( x + 1 ) ) = ( P ` ( I + 1 ) ) ) |
|
| 5 | 3 4 | preq12d | |- ( x = I -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) |
| 6 | 5 | fveq2d | |- ( x = I -> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |
| 7 | 3 | preq1d | |- ( x = I -> { ( P ` x ) , ( P ` 0 ) } = { ( P ` I ) , ( P ` 0 ) } ) |
| 8 | 7 | fveq2d | |- ( x = I -> ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) = ( `' E ` { ( P ` I ) , ( P ` 0 ) } ) ) |
| 9 | 2 6 8 | ifbieq12d | |- ( x = I -> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) = if ( I < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) , ( `' E ` { ( P ` I ) , ( P ` 0 ) } ) ) ) |
| 10 | elfzolt2 | |- ( I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) -> I < ( ( # ` P ) - 2 ) ) |
|
| 11 | 10 | adantl | |- ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> I < ( ( # ` P ) - 2 ) ) |
| 12 | 11 | iftrued | |- ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> if ( I < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) , ( `' E ` { ( P ` I ) , ( P ` 0 ) } ) ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |
| 13 | 9 12 | sylan9eqr | |- ( ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) /\ x = I ) -> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |
| 14 | nn0z | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ ) |
|
| 15 | 2z | |- 2 e. ZZ |
|
| 16 | 15 | a1i | |- ( ( # ` P ) e. NN0 -> 2 e. ZZ ) |
| 17 | 14 16 | zsubcld | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 18 | peano2zm | |- ( ( # ` P ) e. ZZ -> ( ( # ` P ) - 1 ) e. ZZ ) |
|
| 19 | 14 18 | syl | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 1 ) e. ZZ ) |
| 20 | 1red | |- ( ( # ` P ) e. NN0 -> 1 e. RR ) |
|
| 21 | 2re | |- 2 e. RR |
|
| 22 | 21 | a1i | |- ( ( # ` P ) e. NN0 -> 2 e. RR ) |
| 23 | nn0re | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR ) |
|
| 24 | 1le2 | |- 1 <_ 2 |
|
| 25 | 24 | a1i | |- ( ( # ` P ) e. NN0 -> 1 <_ 2 ) |
| 26 | 20 22 23 25 | lesub2dd | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) <_ ( ( # ` P ) - 1 ) ) |
| 27 | eluz2 | |- ( ( ( # ` P ) - 1 ) e. ( ZZ>= ` ( ( # ` P ) - 2 ) ) <-> ( ( ( # ` P ) - 2 ) e. ZZ /\ ( ( # ` P ) - 1 ) e. ZZ /\ ( ( # ` P ) - 2 ) <_ ( ( # ` P ) - 1 ) ) ) |
|
| 28 | 17 19 26 27 | syl3anbrc | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 1 ) e. ( ZZ>= ` ( ( # ` P ) - 2 ) ) ) |
| 29 | fzoss2 | |- ( ( ( # ` P ) - 1 ) e. ( ZZ>= ` ( ( # ` P ) - 2 ) ) -> ( 0 ..^ ( ( # ` P ) - 2 ) ) C_ ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
|
| 30 | 28 29 | syl | |- ( ( # ` P ) e. NN0 -> ( 0 ..^ ( ( # ` P ) - 2 ) ) C_ ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
| 31 | 30 | sselda | |- ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
| 32 | fvexd | |- ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) e. _V ) |
|
| 33 | 1 13 31 32 | fvmptd2 | |- ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 2 ) ) ) -> ( F ` I ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |