This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4b for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 22-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clwlkclwwlklem2.f | |- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
|
| Assertion | clwlkclwwlklem2fv2 | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( F ` ( ( # ` P ) - 2 ) ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwlkclwwlklem2.f | |- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
|
| 2 | simpr | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> x = ( ( # ` P ) - 2 ) ) |
|
| 3 | nn0z | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. ZZ ) |
|
| 4 | 2z | |- 2 e. ZZ |
|
| 5 | 3 4 | jctir | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) e. ZZ /\ 2 e. ZZ ) ) |
| 6 | zsubcl | |- ( ( ( # ` P ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` P ) - 2 ) e. ZZ ) |
|
| 7 | 5 6 | syl | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 8 | 7 | adantr | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 9 | 8 | adantr | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 10 | 2 9 | eqeltrd | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> x e. ZZ ) |
| 11 | 10 | ex | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( x = ( ( # ` P ) - 2 ) -> x e. ZZ ) ) |
| 12 | zre | |- ( x e. ZZ -> x e. RR ) |
|
| 13 | nn0re | |- ( ( # ` P ) e. NN0 -> ( # ` P ) e. RR ) |
|
| 14 | 2re | |- 2 e. RR |
|
| 15 | 14 | a1i | |- ( ( # ` P ) e. NN0 -> 2 e. RR ) |
| 16 | 13 15 | resubcld | |- ( ( # ` P ) e. NN0 -> ( ( # ` P ) - 2 ) e. RR ) |
| 17 | 16 | adantr | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. RR ) |
| 18 | lttri3 | |- ( ( x e. RR /\ ( ( # ` P ) - 2 ) e. RR ) -> ( x = ( ( # ` P ) - 2 ) <-> ( -. x < ( ( # ` P ) - 2 ) /\ -. ( ( # ` P ) - 2 ) < x ) ) ) |
|
| 19 | 12 17 18 | syl2anr | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x e. ZZ ) -> ( x = ( ( # ` P ) - 2 ) <-> ( -. x < ( ( # ` P ) - 2 ) /\ -. ( ( # ` P ) - 2 ) < x ) ) ) |
| 20 | simpl | |- ( ( -. x < ( ( # ` P ) - 2 ) /\ -. ( ( # ` P ) - 2 ) < x ) -> -. x < ( ( # ` P ) - 2 ) ) |
|
| 21 | 19 20 | biimtrdi | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x e. ZZ ) -> ( x = ( ( # ` P ) - 2 ) -> -. x < ( ( # ` P ) - 2 ) ) ) |
| 22 | 21 | ex | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( x e. ZZ -> ( x = ( ( # ` P ) - 2 ) -> -. x < ( ( # ` P ) - 2 ) ) ) ) |
| 23 | 11 22 | syld | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( x = ( ( # ` P ) - 2 ) -> ( x = ( ( # ` P ) - 2 ) -> -. x < ( ( # ` P ) - 2 ) ) ) ) |
| 24 | 23 | com13 | |- ( x = ( ( # ` P ) - 2 ) -> ( x = ( ( # ` P ) - 2 ) -> ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> -. x < ( ( # ` P ) - 2 ) ) ) ) |
| 25 | 24 | pm2.43i | |- ( x = ( ( # ` P ) - 2 ) -> ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> -. x < ( ( # ` P ) - 2 ) ) ) |
| 26 | 25 | impcom | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> -. x < ( ( # ` P ) - 2 ) ) |
| 27 | 26 | iffalsed | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) = ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) |
| 28 | fveq2 | |- ( x = ( ( # ` P ) - 2 ) -> ( P ` x ) = ( P ` ( ( # ` P ) - 2 ) ) ) |
|
| 29 | 28 | adantl | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> ( P ` x ) = ( P ` ( ( # ` P ) - 2 ) ) ) |
| 30 | 29 | preq1d | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> { ( P ` x ) , ( P ` 0 ) } = { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) |
| 31 | 30 | fveq2d | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
| 32 | 27 31 | eqtrd | |- ( ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) /\ x = ( ( # ` P ) - 2 ) ) -> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |
| 33 | 5 | adantr | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) e. ZZ /\ 2 e. ZZ ) ) |
| 34 | 33 6 | syl | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ZZ ) |
| 35 | 13 15 | subge0d | |- ( ( # ` P ) e. NN0 -> ( 0 <_ ( ( # ` P ) - 2 ) <-> 2 <_ ( # ` P ) ) ) |
| 36 | 35 | biimpar | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 0 <_ ( ( # ` P ) - 2 ) ) |
| 37 | elnn0z | |- ( ( ( # ` P ) - 2 ) e. NN0 <-> ( ( ( # ` P ) - 2 ) e. ZZ /\ 0 <_ ( ( # ` P ) - 2 ) ) ) |
|
| 38 | 34 36 37 | sylanbrc | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. NN0 ) |
| 39 | nn0ge2m1nn | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 1 ) e. NN ) |
|
| 40 | 1red | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 1 e. RR ) |
|
| 41 | 14 | a1i | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 2 e. RR ) |
| 42 | 13 | adantr | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( # ` P ) e. RR ) |
| 43 | 1lt2 | |- 1 < 2 |
|
| 44 | 43 | a1i | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> 1 < 2 ) |
| 45 | 40 41 42 44 | ltsub2dd | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) < ( ( # ` P ) - 1 ) ) |
| 46 | elfzo0 | |- ( ( ( # ` P ) - 2 ) e. ( 0 ..^ ( ( # ` P ) - 1 ) ) <-> ( ( ( # ` P ) - 2 ) e. NN0 /\ ( ( # ` P ) - 1 ) e. NN /\ ( ( # ` P ) - 2 ) < ( ( # ` P ) - 1 ) ) ) |
|
| 47 | 38 39 45 46 | syl3anbrc | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 2 ) e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
| 48 | fvexd | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) e. _V ) |
|
| 49 | 1 32 47 48 | fvmptd2 | |- ( ( ( # ` P ) e. NN0 /\ 2 <_ ( # ` P ) ) -> ( F ` ( ( # ` P ) - 2 ) ) = ( `' E ` { ( P ` ( ( # ` P ) - 2 ) ) , ( P ` 0 ) } ) ) |