This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of BourbakiTop1 p. III.1. (Contributed by FL, 21-Jun-2010) (Revised by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpsubcn.2 | |- J = ( TopOpen ` G ) |
|
| tgpsubcn.3 | |- .- = ( -g ` G ) |
||
| Assertion | tgpsubcn | |- ( G e. TopGrp -> .- e. ( ( J tX J ) Cn J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpsubcn.2 | |- J = ( TopOpen ` G ) |
|
| 2 | tgpsubcn.3 | |- .- = ( -g ` G ) |
|
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 5 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 6 | 3 4 5 2 | grpsubfval | |- .- = ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( x ( +g ` G ) ( ( invg ` G ) ` y ) ) ) |
| 7 | tgptmd | |- ( G e. TopGrp -> G e. TopMnd ) |
|
| 8 | 1 3 | tgptopon | |- ( G e. TopGrp -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 9 | 8 8 | cnmpt1st | |- ( G e. TopGrp -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> x ) e. ( ( J tX J ) Cn J ) ) |
| 10 | 8 8 | cnmpt2nd | |- ( G e. TopGrp -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> y ) e. ( ( J tX J ) Cn J ) ) |
| 11 | 1 5 | tgpinv | |- ( G e. TopGrp -> ( invg ` G ) e. ( J Cn J ) ) |
| 12 | 8 8 10 11 | cnmpt21f | |- ( G e. TopGrp -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( ( invg ` G ) ` y ) ) e. ( ( J tX J ) Cn J ) ) |
| 13 | 1 4 7 8 8 9 12 | cnmpt2plusg | |- ( G e. TopGrp -> ( x e. ( Base ` G ) , y e. ( Base ` G ) |-> ( x ( +g ` G ) ( ( invg ` G ) ` y ) ) ) e. ( ( J tX J ) Cn J ) ) |
| 14 | 6 13 | eqeltrid | |- ( G e. TopGrp -> .- e. ( ( J tX J ) Cn J ) ) |