This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the preimage of a closure. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cncls2i.1 | |- Y = U. K |
|
| Assertion | cncls2i | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( ( cls ` J ) ` ( `' F " S ) ) C_ ( `' F " ( ( cls ` K ) ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncls2i.1 | |- Y = U. K |
|
| 2 | cntop2 | |- ( F e. ( J Cn K ) -> K e. Top ) |
|
| 3 | 1 | clscld | |- ( ( K e. Top /\ S C_ Y ) -> ( ( cls ` K ) ` S ) e. ( Clsd ` K ) ) |
| 4 | 2 3 | sylan | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( ( cls ` K ) ` S ) e. ( Clsd ` K ) ) |
| 5 | cnclima | |- ( ( F e. ( J Cn K ) /\ ( ( cls ` K ) ` S ) e. ( Clsd ` K ) ) -> ( `' F " ( ( cls ` K ) ` S ) ) e. ( Clsd ` J ) ) |
|
| 6 | 4 5 | syldan | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " ( ( cls ` K ) ` S ) ) e. ( Clsd ` J ) ) |
| 7 | 1 | sscls | |- ( ( K e. Top /\ S C_ Y ) -> S C_ ( ( cls ` K ) ` S ) ) |
| 8 | 2 7 | sylan | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> S C_ ( ( cls ` K ) ` S ) ) |
| 9 | imass2 | |- ( S C_ ( ( cls ` K ) ` S ) -> ( `' F " S ) C_ ( `' F " ( ( cls ` K ) ` S ) ) ) |
|
| 10 | 8 9 | syl | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( `' F " S ) C_ ( `' F " ( ( cls ` K ) ` S ) ) ) |
| 11 | eqid | |- U. J = U. J |
|
| 12 | 11 | clsss2 | |- ( ( ( `' F " ( ( cls ` K ) ` S ) ) e. ( Clsd ` J ) /\ ( `' F " S ) C_ ( `' F " ( ( cls ` K ) ` S ) ) ) -> ( ( cls ` J ) ` ( `' F " S ) ) C_ ( `' F " ( ( cls ` K ) ` S ) ) ) |
| 13 | 6 10 12 | syl2anc | |- ( ( F e. ( J Cn K ) /\ S C_ Y ) -> ( ( cls ` J ) ` ( `' F " S ) ) C_ ( `' F " ( ( cls ` K ) ` S ) ) ) |