This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtprm | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( theta ` ( A + 1 ) ) = ( ( theta ` A ) + ( log ` ( A + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z | |- ( A e. ZZ -> ( A + 1 ) e. ZZ ) |
|
| 2 | 1 | adantr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. ZZ ) |
| 3 | zre | |- ( ( A + 1 ) e. ZZ -> ( A + 1 ) e. RR ) |
|
| 4 | 2 3 | syl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. RR ) |
| 5 | chtval | |- ( ( A + 1 ) e. RR -> ( theta ` ( A + 1 ) ) = sum_ p e. ( ( 0 [,] ( A + 1 ) ) i^i Prime ) ( log ` p ) ) |
|
| 6 | 4 5 | syl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( theta ` ( A + 1 ) ) = sum_ p e. ( ( 0 [,] ( A + 1 ) ) i^i Prime ) ( log ` p ) ) |
| 7 | ppisval | |- ( ( A + 1 ) e. RR -> ( ( 0 [,] ( A + 1 ) ) i^i Prime ) = ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) ) |
|
| 8 | 4 7 | syl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 0 [,] ( A + 1 ) ) i^i Prime ) = ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) ) |
| 9 | flid | |- ( ( A + 1 ) e. ZZ -> ( |_ ` ( A + 1 ) ) = ( A + 1 ) ) |
|
| 10 | 2 9 | syl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( |_ ` ( A + 1 ) ) = ( A + 1 ) ) |
| 11 | 10 | oveq2d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( 2 ... ( |_ ` ( A + 1 ) ) ) = ( 2 ... ( A + 1 ) ) ) |
| 12 | 11 | ineq1d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) = ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
| 13 | 8 12 | eqtrd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 0 [,] ( A + 1 ) ) i^i Prime ) = ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
| 14 | 13 | sumeq1d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> sum_ p e. ( ( 0 [,] ( A + 1 ) ) i^i Prime ) ( log ` p ) = sum_ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ( log ` p ) ) |
| 15 | 6 14 | eqtrd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( theta ` ( A + 1 ) ) = sum_ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ( log ` p ) ) |
| 16 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 17 | 16 | adantr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. RR ) |
| 18 | 17 | ltp1d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A < ( A + 1 ) ) |
| 19 | 17 4 | ltnled | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A < ( A + 1 ) <-> -. ( A + 1 ) <_ A ) ) |
| 20 | 18 19 | mpbid | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> -. ( A + 1 ) <_ A ) |
| 21 | elinel1 | |- ( ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) -> ( A + 1 ) e. ( 2 ... A ) ) |
|
| 22 | elfzle2 | |- ( ( A + 1 ) e. ( 2 ... A ) -> ( A + 1 ) <_ A ) |
|
| 23 | 21 22 | syl | |- ( ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) -> ( A + 1 ) <_ A ) |
| 24 | 20 23 | nsyl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> -. ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) ) |
| 25 | disjsn | |- ( ( ( ( 2 ... A ) i^i Prime ) i^i { ( A + 1 ) } ) = (/) <-> -. ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) ) |
|
| 26 | 24 25 | sylibr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( ( 2 ... A ) i^i Prime ) i^i { ( A + 1 ) } ) = (/) ) |
| 27 | 2z | |- 2 e. ZZ |
|
| 28 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 29 | 28 | adantr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. CC ) |
| 30 | ax-1cn | |- 1 e. CC |
|
| 31 | pncan | |- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) |
|
| 32 | 29 30 31 | sylancl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( A + 1 ) - 1 ) = A ) |
| 33 | prmuz2 | |- ( ( A + 1 ) e. Prime -> ( A + 1 ) e. ( ZZ>= ` 2 ) ) |
|
| 34 | 33 | adantl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. ( ZZ>= ` 2 ) ) |
| 35 | uz2m1nn | |- ( ( A + 1 ) e. ( ZZ>= ` 2 ) -> ( ( A + 1 ) - 1 ) e. NN ) |
|
| 36 | 34 35 | syl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( A + 1 ) - 1 ) e. NN ) |
| 37 | 32 36 | eqeltrrd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. NN ) |
| 38 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 39 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 40 | 39 | fveq2i | |- ( ZZ>= ` ( 2 - 1 ) ) = ( ZZ>= ` 1 ) |
| 41 | 38 40 | eqtr4i | |- NN = ( ZZ>= ` ( 2 - 1 ) ) |
| 42 | 37 41 | eleqtrdi | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. ( ZZ>= ` ( 2 - 1 ) ) ) |
| 43 | fzsuc2 | |- ( ( 2 e. ZZ /\ A e. ( ZZ>= ` ( 2 - 1 ) ) ) -> ( 2 ... ( A + 1 ) ) = ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
|
| 44 | 27 42 43 | sylancr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( 2 ... ( A + 1 ) ) = ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
| 45 | 44 | ineq1d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( ( 2 ... A ) u. { ( A + 1 ) } ) i^i Prime ) ) |
| 46 | indir | |- ( ( ( 2 ... A ) u. { ( A + 1 ) } ) i^i Prime ) = ( ( ( 2 ... A ) i^i Prime ) u. ( { ( A + 1 ) } i^i Prime ) ) |
|
| 47 | 45 46 | eqtrdi | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( ( 2 ... A ) i^i Prime ) u. ( { ( A + 1 ) } i^i Prime ) ) ) |
| 48 | simpr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. Prime ) |
|
| 49 | 48 | snssd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> { ( A + 1 ) } C_ Prime ) |
| 50 | dfss2 | |- ( { ( A + 1 ) } C_ Prime <-> ( { ( A + 1 ) } i^i Prime ) = { ( A + 1 ) } ) |
|
| 51 | 49 50 | sylib | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( { ( A + 1 ) } i^i Prime ) = { ( A + 1 ) } ) |
| 52 | 51 | uneq2d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( ( 2 ... A ) i^i Prime ) u. ( { ( A + 1 ) } i^i Prime ) ) = ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) |
| 53 | 47 52 | eqtrd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) |
| 54 | fzfid | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( 2 ... ( A + 1 ) ) e. Fin ) |
|
| 55 | inss1 | |- ( ( 2 ... ( A + 1 ) ) i^i Prime ) C_ ( 2 ... ( A + 1 ) ) |
|
| 56 | ssfi | |- ( ( ( 2 ... ( A + 1 ) ) e. Fin /\ ( ( 2 ... ( A + 1 ) ) i^i Prime ) C_ ( 2 ... ( A + 1 ) ) ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) e. Fin ) |
|
| 57 | 54 55 56 | sylancl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) e. Fin ) |
| 58 | simpr | |- ( ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) /\ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) -> p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
|
| 59 | 58 | elin2d | |- ( ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) /\ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) -> p e. Prime ) |
| 60 | prmnn | |- ( p e. Prime -> p e. NN ) |
|
| 61 | 59 60 | syl | |- ( ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) /\ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) -> p e. NN ) |
| 62 | 61 | nnrpd | |- ( ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) /\ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) -> p e. RR+ ) |
| 63 | 62 | relogcld | |- ( ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) /\ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) -> ( log ` p ) e. RR ) |
| 64 | 63 | recnd | |- ( ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) /\ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) -> ( log ` p ) e. CC ) |
| 65 | 26 53 57 64 | fsumsplit | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> sum_ p e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ( log ` p ) = ( sum_ p e. ( ( 2 ... A ) i^i Prime ) ( log ` p ) + sum_ p e. { ( A + 1 ) } ( log ` p ) ) ) |
| 66 | chtval | |- ( A e. RR -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
|
| 67 | 17 66 | syl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
| 68 | ppisval | |- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
|
| 69 | 17 68 | syl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 70 | flid | |- ( A e. ZZ -> ( |_ ` A ) = A ) |
|
| 71 | 70 | adantr | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( |_ ` A ) = A ) |
| 72 | 71 | oveq2d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( 2 ... ( |_ ` A ) ) = ( 2 ... A ) ) |
| 73 | 72 | ineq1d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) = ( ( 2 ... A ) i^i Prime ) ) |
| 74 | 69 73 | eqtrd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... A ) i^i Prime ) ) |
| 75 | 74 | sumeq1d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) = sum_ p e. ( ( 2 ... A ) i^i Prime ) ( log ` p ) ) |
| 76 | 67 75 | eqtr2d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> sum_ p e. ( ( 2 ... A ) i^i Prime ) ( log ` p ) = ( theta ` A ) ) |
| 77 | prmnn | |- ( ( A + 1 ) e. Prime -> ( A + 1 ) e. NN ) |
|
| 78 | 77 | adantl | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. NN ) |
| 79 | 78 | nnrpd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. RR+ ) |
| 80 | 79 | relogcld | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( log ` ( A + 1 ) ) e. RR ) |
| 81 | 80 | recnd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( log ` ( A + 1 ) ) e. CC ) |
| 82 | fveq2 | |- ( p = ( A + 1 ) -> ( log ` p ) = ( log ` ( A + 1 ) ) ) |
|
| 83 | 82 | sumsn | |- ( ( ( A + 1 ) e. NN /\ ( log ` ( A + 1 ) ) e. CC ) -> sum_ p e. { ( A + 1 ) } ( log ` p ) = ( log ` ( A + 1 ) ) ) |
| 84 | 78 81 83 | syl2anc | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> sum_ p e. { ( A + 1 ) } ( log ` p ) = ( log ` ( A + 1 ) ) ) |
| 85 | 76 84 | oveq12d | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( sum_ p e. ( ( 2 ... A ) i^i Prime ) ( log ` p ) + sum_ p e. { ( A + 1 ) } ( log ` p ) ) = ( ( theta ` A ) + ( log ` ( A + 1 ) ) ) ) |
| 86 | 15 65 85 | 3eqtrd | |- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( theta ` ( A + 1 ) ) = ( ( theta ` A ) + ( log ` ( A + 1 ) ) ) ) |