This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Chebyshev function at a non-prime. (Contributed by Mario Carneiro, 19-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtnprm | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( theta ` ( A + 1 ) ) = ( theta ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
|
| 2 | 1 | elin2d | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x e. Prime ) |
| 3 | simprl | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> -. ( A + 1 ) e. Prime ) |
|
| 4 | nelne2 | |- ( ( x e. Prime /\ -. ( A + 1 ) e. Prime ) -> x =/= ( A + 1 ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x =/= ( A + 1 ) ) |
| 6 | velsn | |- ( x e. { ( A + 1 ) } <-> x = ( A + 1 ) ) |
|
| 7 | 6 | necon3bbii | |- ( -. x e. { ( A + 1 ) } <-> x =/= ( A + 1 ) ) |
| 8 | 5 7 | sylibr | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> -. x e. { ( A + 1 ) } ) |
| 9 | 1 | elin1d | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x e. ( 2 ... ( A + 1 ) ) ) |
| 10 | 2z | |- 2 e. ZZ |
|
| 11 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 12 | 11 | adantr | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> A e. CC ) |
| 13 | ax-1cn | |- 1 e. CC |
|
| 14 | pncan | |- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) |
|
| 15 | 12 13 14 | sylancl | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> ( ( A + 1 ) - 1 ) = A ) |
| 16 | elfzuz2 | |- ( x e. ( 2 ... ( A + 1 ) ) -> ( A + 1 ) e. ( ZZ>= ` 2 ) ) |
|
| 17 | uz2m1nn | |- ( ( A + 1 ) e. ( ZZ>= ` 2 ) -> ( ( A + 1 ) - 1 ) e. NN ) |
|
| 18 | 9 16 17 | 3syl | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> ( ( A + 1 ) - 1 ) e. NN ) |
| 19 | 15 18 | eqeltrrd | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> A e. NN ) |
| 20 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 21 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 22 | 21 | fveq2i | |- ( ZZ>= ` ( 2 - 1 ) ) = ( ZZ>= ` 1 ) |
| 23 | 20 22 | eqtr4i | |- NN = ( ZZ>= ` ( 2 - 1 ) ) |
| 24 | 19 23 | eleqtrdi | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> A e. ( ZZ>= ` ( 2 - 1 ) ) ) |
| 25 | fzsuc2 | |- ( ( 2 e. ZZ /\ A e. ( ZZ>= ` ( 2 - 1 ) ) ) -> ( 2 ... ( A + 1 ) ) = ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
|
| 26 | 10 24 25 | sylancr | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> ( 2 ... ( A + 1 ) ) = ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
| 27 | 9 26 | eleqtrd | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x e. ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
| 28 | elun | |- ( x e. ( ( 2 ... A ) u. { ( A + 1 ) } ) <-> ( x e. ( 2 ... A ) \/ x e. { ( A + 1 ) } ) ) |
|
| 29 | 27 28 | sylib | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> ( x e. ( 2 ... A ) \/ x e. { ( A + 1 ) } ) ) |
| 30 | 29 | ord | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> ( -. x e. ( 2 ... A ) -> x e. { ( A + 1 ) } ) ) |
| 31 | 8 30 | mt3d | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x e. ( 2 ... A ) ) |
| 32 | 31 2 | elind | |- ( ( A e. ZZ /\ ( -. ( A + 1 ) e. Prime /\ x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) -> x e. ( ( 2 ... A ) i^i Prime ) ) |
| 33 | 32 | expr | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( x e. ( ( 2 ... ( A + 1 ) ) i^i Prime ) -> x e. ( ( 2 ... A ) i^i Prime ) ) ) |
| 34 | 33 | ssrdv | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) C_ ( ( 2 ... A ) i^i Prime ) ) |
| 35 | uzid | |- ( A e. ZZ -> A e. ( ZZ>= ` A ) ) |
|
| 36 | 35 | adantr | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> A e. ( ZZ>= ` A ) ) |
| 37 | peano2uz | |- ( A e. ( ZZ>= ` A ) -> ( A + 1 ) e. ( ZZ>= ` A ) ) |
|
| 38 | fzss2 | |- ( ( A + 1 ) e. ( ZZ>= ` A ) -> ( 2 ... A ) C_ ( 2 ... ( A + 1 ) ) ) |
|
| 39 | ssrin | |- ( ( 2 ... A ) C_ ( 2 ... ( A + 1 ) ) -> ( ( 2 ... A ) i^i Prime ) C_ ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
|
| 40 | 36 37 38 39 | 4syl | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 2 ... A ) i^i Prime ) C_ ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
| 41 | 34 40 | eqssd | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( 2 ... A ) i^i Prime ) ) |
| 42 | peano2z | |- ( A e. ZZ -> ( A + 1 ) e. ZZ ) |
|
| 43 | 42 | adantr | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( A + 1 ) e. ZZ ) |
| 44 | flid | |- ( ( A + 1 ) e. ZZ -> ( |_ ` ( A + 1 ) ) = ( A + 1 ) ) |
|
| 45 | 43 44 | syl | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( |_ ` ( A + 1 ) ) = ( A + 1 ) ) |
| 46 | 45 | oveq2d | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( 2 ... ( |_ ` ( A + 1 ) ) ) = ( 2 ... ( A + 1 ) ) ) |
| 47 | 46 | ineq1d | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) = ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) |
| 48 | flid | |- ( A e. ZZ -> ( |_ ` A ) = A ) |
|
| 49 | 48 | adantr | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( |_ ` A ) = A ) |
| 50 | 49 | oveq2d | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( 2 ... ( |_ ` A ) ) = ( 2 ... A ) ) |
| 51 | 50 | ineq1d | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) = ( ( 2 ... A ) i^i Prime ) ) |
| 52 | 41 47 51 | 3eqtr4d | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 53 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 54 | 53 | adantr | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> A e. RR ) |
| 55 | peano2re | |- ( A e. RR -> ( A + 1 ) e. RR ) |
|
| 56 | ppisval | |- ( ( A + 1 ) e. RR -> ( ( 0 [,] ( A + 1 ) ) i^i Prime ) = ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) ) |
|
| 57 | 54 55 56 | 3syl | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 0 [,] ( A + 1 ) ) i^i Prime ) = ( ( 2 ... ( |_ ` ( A + 1 ) ) ) i^i Prime ) ) |
| 58 | ppisval | |- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
|
| 59 | 54 58 | syl | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 60 | 52 57 59 | 3eqtr4d | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( ( 0 [,] ( A + 1 ) ) i^i Prime ) = ( ( 0 [,] A ) i^i Prime ) ) |
| 61 | 60 | sumeq1d | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> sum_ p e. ( ( 0 [,] ( A + 1 ) ) i^i Prime ) ( log ` p ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
| 62 | chtval | |- ( ( A + 1 ) e. RR -> ( theta ` ( A + 1 ) ) = sum_ p e. ( ( 0 [,] ( A + 1 ) ) i^i Prime ) ( log ` p ) ) |
|
| 63 | 54 55 62 | 3syl | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( theta ` ( A + 1 ) ) = sum_ p e. ( ( 0 [,] ( A + 1 ) ) i^i Prime ) ( log ` p ) ) |
| 64 | chtval | |- ( A e. RR -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
|
| 65 | 54 64 | syl | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
| 66 | 61 63 65 | 3eqtr4d | |- ( ( A e. ZZ /\ -. ( A + 1 ) e. Prime ) -> ( theta ` ( A + 1 ) ) = ( theta ` A ) ) |