This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Chebyshev function at a prime. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtprm | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ ( 𝐴 + 1 ) ) = ( ( θ ‘ 𝐴 ) + ( log ‘ ( 𝐴 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2z | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 + 1 ) ∈ ℤ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℤ ) |
| 3 | zre | ⊢ ( ( 𝐴 + 1 ) ∈ ℤ → ( 𝐴 + 1 ) ∈ ℝ ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 5 | chtval | ⊢ ( ( 𝐴 + 1 ) ∈ ℝ → ( θ ‘ ( 𝐴 + 1 ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ ( 𝐴 + 1 ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 7 | ppisval | ⊢ ( ( 𝐴 + 1 ) ∈ ℝ → ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ∩ ℙ ) ) | |
| 8 | 4 7 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ∩ ℙ ) ) |
| 9 | flid | ⊢ ( ( 𝐴 + 1 ) ∈ ℤ → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( 𝐴 + 1 ) ) | |
| 10 | 2 9 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( 𝐴 + 1 ) ) |
| 11 | 10 | oveq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) = ( 2 ... ( 𝐴 + 1 ) ) ) |
| 12 | 11 | ineq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( ⌊ ‘ ( 𝐴 + 1 ) ) ) ∩ ℙ ) = ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) |
| 13 | 8 12 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) |
| 14 | 13 | sumeq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) = Σ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 15 | 6 14 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ ( 𝐴 + 1 ) ) = Σ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 16 | zre | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ℝ ) |
| 18 | 17 | ltp1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 < ( 𝐴 + 1 ) ) |
| 19 | 17 4 | ltnled | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 < ( 𝐴 + 1 ) ↔ ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) ) |
| 20 | 18 19 | mpbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ¬ ( 𝐴 + 1 ) ≤ 𝐴 ) |
| 21 | elinel1 | ⊢ ( ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) → ( 𝐴 + 1 ) ∈ ( 2 ... 𝐴 ) ) | |
| 22 | elfzle2 | ⊢ ( ( 𝐴 + 1 ) ∈ ( 2 ... 𝐴 ) → ( 𝐴 + 1 ) ≤ 𝐴 ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) → ( 𝐴 + 1 ) ≤ 𝐴 ) |
| 24 | 20 23 | nsyl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ¬ ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 25 | disjsn | ⊢ ( ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∩ { ( 𝐴 + 1 ) } ) = ∅ ↔ ¬ ( 𝐴 + 1 ) ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) | |
| 26 | 24 25 | sylibr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∩ { ( 𝐴 + 1 ) } ) = ∅ ) |
| 27 | 2z | ⊢ 2 ∈ ℤ | |
| 28 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ℂ ) |
| 30 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 31 | pncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) | |
| 32 | 29 30 31 | sylancl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 33 | prmuz2 | ⊢ ( ( 𝐴 + 1 ) ∈ ℙ → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) | |
| 34 | 33 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 35 | uz2m1nn | ⊢ ( ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 + 1 ) − 1 ) ∈ ℕ ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 𝐴 + 1 ) − 1 ) ∈ ℕ ) |
| 37 | 32 36 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ℕ ) |
| 38 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 39 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 40 | 39 | fveq2i | ⊢ ( ℤ≥ ‘ ( 2 − 1 ) ) = ( ℤ≥ ‘ 1 ) |
| 41 | 38 40 | eqtr4i | ⊢ ℕ = ( ℤ≥ ‘ ( 2 − 1 ) ) |
| 42 | 37 41 | eleqtrdi | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → 𝐴 ∈ ( ℤ≥ ‘ ( 2 − 1 ) ) ) |
| 43 | fzsuc2 | ⊢ ( ( 2 ∈ ℤ ∧ 𝐴 ∈ ( ℤ≥ ‘ ( 2 − 1 ) ) ) → ( 2 ... ( 𝐴 + 1 ) ) = ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ) | |
| 44 | 27 42 43 | sylancr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 2 ... ( 𝐴 + 1 ) ) = ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 45 | 44 | ineq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ∩ ℙ ) ) |
| 46 | indir | ⊢ ( ( ( 2 ... 𝐴 ) ∪ { ( 𝐴 + 1 ) } ) ∩ ℙ ) = ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ ( { ( 𝐴 + 1 ) } ∩ ℙ ) ) | |
| 47 | 45 46 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ ( { ( 𝐴 + 1 ) } ∩ ℙ ) ) ) |
| 48 | simpr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℙ ) | |
| 49 | 48 | snssd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → { ( 𝐴 + 1 ) } ⊆ ℙ ) |
| 50 | dfss2 | ⊢ ( { ( 𝐴 + 1 ) } ⊆ ℙ ↔ ( { ( 𝐴 + 1 ) } ∩ ℙ ) = { ( 𝐴 + 1 ) } ) | |
| 51 | 49 50 | sylib | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( { ( 𝐴 + 1 ) } ∩ ℙ ) = { ( 𝐴 + 1 ) } ) |
| 52 | 51 | uneq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ ( { ( 𝐴 + 1 ) } ∩ ℙ ) ) = ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 53 | 47 52 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) = ( ( ( 2 ... 𝐴 ) ∩ ℙ ) ∪ { ( 𝐴 + 1 ) } ) ) |
| 54 | fzfid | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 2 ... ( 𝐴 + 1 ) ) ∈ Fin ) | |
| 55 | inss1 | ⊢ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ⊆ ( 2 ... ( 𝐴 + 1 ) ) | |
| 56 | ssfi | ⊢ ( ( ( 2 ... ( 𝐴 + 1 ) ) ∈ Fin ∧ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ⊆ ( 2 ... ( 𝐴 + 1 ) ) ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ∈ Fin ) | |
| 57 | 54 55 56 | sylancl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ∈ Fin ) |
| 58 | simpr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) | |
| 59 | 58 | elin2d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
| 60 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 61 | 59 60 | syl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
| 62 | 61 | nnrpd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
| 63 | 62 | relogcld | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 64 | 63 | recnd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) ∧ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
| 65 | 26 53 57 64 | fsumsplit | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → Σ 𝑝 ∈ ( ( 2 ... ( 𝐴 + 1 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) = ( Σ 𝑝 ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ { ( 𝐴 + 1 ) } ( log ‘ 𝑝 ) ) ) |
| 66 | chtval | ⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 67 | 17 66 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 68 | ppisval | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) | |
| 69 | 17 68 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 70 | flid | ⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) | |
| 71 | 70 | adantr | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
| 72 | 71 | oveq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 2 ... ( ⌊ ‘ 𝐴 ) ) = ( 2 ... 𝐴 ) ) |
| 73 | 72 | ineq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 74 | 69 73 | eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
| 75 | 74 | sumeq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) = Σ 𝑝 ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 76 | 67 75 | eqtr2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → Σ 𝑝 ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) = ( θ ‘ 𝐴 ) ) |
| 77 | prmnn | ⊢ ( ( 𝐴 + 1 ) ∈ ℙ → ( 𝐴 + 1 ) ∈ ℕ ) | |
| 78 | 77 | adantl | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℕ ) |
| 79 | 78 | nnrpd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( 𝐴 + 1 ) ∈ ℝ+ ) |
| 80 | 79 | relogcld | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 81 | 80 | recnd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℂ ) |
| 82 | fveq2 | ⊢ ( 𝑝 = ( 𝐴 + 1 ) → ( log ‘ 𝑝 ) = ( log ‘ ( 𝐴 + 1 ) ) ) | |
| 83 | 82 | sumsn | ⊢ ( ( ( 𝐴 + 1 ) ∈ ℕ ∧ ( log ‘ ( 𝐴 + 1 ) ) ∈ ℂ ) → Σ 𝑝 ∈ { ( 𝐴 + 1 ) } ( log ‘ 𝑝 ) = ( log ‘ ( 𝐴 + 1 ) ) ) |
| 84 | 78 81 83 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → Σ 𝑝 ∈ { ( 𝐴 + 1 ) } ( log ‘ 𝑝 ) = ( log ‘ ( 𝐴 + 1 ) ) ) |
| 85 | 76 84 | oveq12d | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( Σ 𝑝 ∈ ( ( 2 ... 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) + Σ 𝑝 ∈ { ( 𝐴 + 1 ) } ( log ‘ 𝑝 ) ) = ( ( θ ‘ 𝐴 ) + ( log ‘ ( 𝐴 + 1 ) ) ) ) |
| 86 | 15 65 85 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℙ ) → ( θ ‘ ( 𝐴 + 1 ) ) = ( ( θ ‘ 𝐴 ) + ( log ‘ ( 𝐴 + 1 ) ) ) ) |