This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express a word with an extra symbol as the union of the word and the new value. (Contributed by Mario Carneiro, 28-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cats1un | |- ( ( A e. Word X /\ B e. X ) -> ( A ++ <" B "> ) = ( A u. { <. ( # ` A ) , B >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatws1cl | |- ( ( A e. Word X /\ B e. X ) -> ( A ++ <" B "> ) e. Word X ) |
|
| 2 | wrdf | |- ( ( A ++ <" B "> ) e. Word X -> ( A ++ <" B "> ) : ( 0 ..^ ( # ` ( A ++ <" B "> ) ) ) --> X ) |
|
| 3 | 1 2 | syl | |- ( ( A e. Word X /\ B e. X ) -> ( A ++ <" B "> ) : ( 0 ..^ ( # ` ( A ++ <" B "> ) ) ) --> X ) |
| 4 | ccatws1len | |- ( A e. Word X -> ( # ` ( A ++ <" B "> ) ) = ( ( # ` A ) + 1 ) ) |
|
| 5 | 4 | oveq2d | |- ( A e. Word X -> ( 0 ..^ ( # ` ( A ++ <" B "> ) ) ) = ( 0 ..^ ( ( # ` A ) + 1 ) ) ) |
| 6 | lencl | |- ( A e. Word X -> ( # ` A ) e. NN0 ) |
|
| 7 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 8 | 6 7 | eleqtrdi | |- ( A e. Word X -> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
| 9 | fzosplitsn | |- ( ( # ` A ) e. ( ZZ>= ` 0 ) -> ( 0 ..^ ( ( # ` A ) + 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
|
| 10 | 8 9 | syl | |- ( A e. Word X -> ( 0 ..^ ( ( # ` A ) + 1 ) ) = ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
| 11 | 5 10 | eqtrd | |- ( A e. Word X -> ( 0 ..^ ( # ` ( A ++ <" B "> ) ) ) = ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
| 12 | 11 | adantr | |- ( ( A e. Word X /\ B e. X ) -> ( 0 ..^ ( # ` ( A ++ <" B "> ) ) ) = ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
| 13 | 12 | feq2d | |- ( ( A e. Word X /\ B e. X ) -> ( ( A ++ <" B "> ) : ( 0 ..^ ( # ` ( A ++ <" B "> ) ) ) --> X <-> ( A ++ <" B "> ) : ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) --> X ) ) |
| 14 | 3 13 | mpbid | |- ( ( A e. Word X /\ B e. X ) -> ( A ++ <" B "> ) : ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) --> X ) |
| 15 | 14 | ffnd | |- ( ( A e. Word X /\ B e. X ) -> ( A ++ <" B "> ) Fn ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
| 16 | wrdf | |- ( A e. Word X -> A : ( 0 ..^ ( # ` A ) ) --> X ) |
|
| 17 | 16 | adantr | |- ( ( A e. Word X /\ B e. X ) -> A : ( 0 ..^ ( # ` A ) ) --> X ) |
| 18 | eqid | |- { <. ( # ` A ) , B >. } = { <. ( # ` A ) , B >. } |
|
| 19 | fsng | |- ( ( ( # ` A ) e. NN0 /\ B e. X ) -> ( { <. ( # ` A ) , B >. } : { ( # ` A ) } --> { B } <-> { <. ( # ` A ) , B >. } = { <. ( # ` A ) , B >. } ) ) |
|
| 20 | 18 19 | mpbiri | |- ( ( ( # ` A ) e. NN0 /\ B e. X ) -> { <. ( # ` A ) , B >. } : { ( # ` A ) } --> { B } ) |
| 21 | 6 20 | sylan | |- ( ( A e. Word X /\ B e. X ) -> { <. ( # ` A ) , B >. } : { ( # ` A ) } --> { B } ) |
| 22 | fzodisjsn | |- ( ( 0 ..^ ( # ` A ) ) i^i { ( # ` A ) } ) = (/) |
|
| 23 | 22 | a1i | |- ( ( A e. Word X /\ B e. X ) -> ( ( 0 ..^ ( # ` A ) ) i^i { ( # ` A ) } ) = (/) ) |
| 24 | fun | |- ( ( ( A : ( 0 ..^ ( # ` A ) ) --> X /\ { <. ( # ` A ) , B >. } : { ( # ` A ) } --> { B } ) /\ ( ( 0 ..^ ( # ` A ) ) i^i { ( # ` A ) } ) = (/) ) -> ( A u. { <. ( # ` A ) , B >. } ) : ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) --> ( X u. { B } ) ) |
|
| 25 | 17 21 23 24 | syl21anc | |- ( ( A e. Word X /\ B e. X ) -> ( A u. { <. ( # ` A ) , B >. } ) : ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) --> ( X u. { B } ) ) |
| 26 | 25 | ffnd | |- ( ( A e. Word X /\ B e. X ) -> ( A u. { <. ( # ` A ) , B >. } ) Fn ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) |
| 27 | elun | |- ( x e. ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) <-> ( x e. ( 0 ..^ ( # ` A ) ) \/ x e. { ( # ` A ) } ) ) |
|
| 28 | ccats1val1 | |- ( ( A e. Word X /\ x e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ <" B "> ) ` x ) = ( A ` x ) ) |
|
| 29 | 28 | adantlr | |- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ <" B "> ) ` x ) = ( A ` x ) ) |
| 30 | simpr | |- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( 0 ..^ ( # ` A ) ) ) -> x e. ( 0 ..^ ( # ` A ) ) ) |
|
| 31 | fzonel | |- -. ( # ` A ) e. ( 0 ..^ ( # ` A ) ) |
|
| 32 | nelne2 | |- ( ( x e. ( 0 ..^ ( # ` A ) ) /\ -. ( # ` A ) e. ( 0 ..^ ( # ` A ) ) ) -> x =/= ( # ` A ) ) |
|
| 33 | 30 31 32 | sylancl | |- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( 0 ..^ ( # ` A ) ) ) -> x =/= ( # ` A ) ) |
| 34 | 33 | necomd | |- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( 0 ..^ ( # ` A ) ) ) -> ( # ` A ) =/= x ) |
| 35 | fvunsn | |- ( ( # ` A ) =/= x -> ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) = ( A ` x ) ) |
|
| 36 | 34 35 | syl | |- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) = ( A ` x ) ) |
| 37 | 29 36 | eqtr4d | |- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ <" B "> ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) ) |
| 38 | fvexd | |- ( ( A e. Word X /\ B e. X ) -> ( # ` A ) e. _V ) |
|
| 39 | simpr | |- ( ( A e. Word X /\ B e. X ) -> B e. X ) |
|
| 40 | 17 | fdmd | |- ( ( A e. Word X /\ B e. X ) -> dom A = ( 0 ..^ ( # ` A ) ) ) |
| 41 | 40 | eleq2d | |- ( ( A e. Word X /\ B e. X ) -> ( ( # ` A ) e. dom A <-> ( # ` A ) e. ( 0 ..^ ( # ` A ) ) ) ) |
| 42 | 31 41 | mtbiri | |- ( ( A e. Word X /\ B e. X ) -> -. ( # ` A ) e. dom A ) |
| 43 | fsnunfv | |- ( ( ( # ` A ) e. _V /\ B e. X /\ -. ( # ` A ) e. dom A ) -> ( ( A u. { <. ( # ` A ) , B >. } ) ` ( # ` A ) ) = B ) |
|
| 44 | 38 39 42 43 | syl3anc | |- ( ( A e. Word X /\ B e. X ) -> ( ( A u. { <. ( # ` A ) , B >. } ) ` ( # ` A ) ) = B ) |
| 45 | simpl | |- ( ( A e. Word X /\ B e. X ) -> A e. Word X ) |
|
| 46 | s1cl | |- ( B e. X -> <" B "> e. Word X ) |
|
| 47 | 46 | adantl | |- ( ( A e. Word X /\ B e. X ) -> <" B "> e. Word X ) |
| 48 | s1len | |- ( # ` <" B "> ) = 1 |
|
| 49 | 1nn | |- 1 e. NN |
|
| 50 | 48 49 | eqeltri | |- ( # ` <" B "> ) e. NN |
| 51 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` <" B "> ) ) <-> ( # ` <" B "> ) e. NN ) |
|
| 52 | 50 51 | mpbir | |- 0 e. ( 0 ..^ ( # ` <" B "> ) ) |
| 53 | 52 | a1i | |- ( ( A e. Word X /\ B e. X ) -> 0 e. ( 0 ..^ ( # ` <" B "> ) ) ) |
| 54 | ccatval3 | |- ( ( A e. Word X /\ <" B "> e. Word X /\ 0 e. ( 0 ..^ ( # ` <" B "> ) ) ) -> ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) = ( <" B "> ` 0 ) ) |
|
| 55 | 45 47 53 54 | syl3anc | |- ( ( A e. Word X /\ B e. X ) -> ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) = ( <" B "> ` 0 ) ) |
| 56 | s1fv | |- ( B e. X -> ( <" B "> ` 0 ) = B ) |
|
| 57 | 56 | adantl | |- ( ( A e. Word X /\ B e. X ) -> ( <" B "> ` 0 ) = B ) |
| 58 | 55 57 | eqtrd | |- ( ( A e. Word X /\ B e. X ) -> ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) = B ) |
| 59 | 6 | adantr | |- ( ( A e. Word X /\ B e. X ) -> ( # ` A ) e. NN0 ) |
| 60 | 59 | nn0cnd | |- ( ( A e. Word X /\ B e. X ) -> ( # ` A ) e. CC ) |
| 61 | 60 | addlidd | |- ( ( A e. Word X /\ B e. X ) -> ( 0 + ( # ` A ) ) = ( # ` A ) ) |
| 62 | 61 | fveq2d | |- ( ( A e. Word X /\ B e. X ) -> ( ( A ++ <" B "> ) ` ( 0 + ( # ` A ) ) ) = ( ( A ++ <" B "> ) ` ( # ` A ) ) ) |
| 63 | 44 58 62 | 3eqtr2rd | |- ( ( A e. Word X /\ B e. X ) -> ( ( A ++ <" B "> ) ` ( # ` A ) ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` ( # ` A ) ) ) |
| 64 | elsni | |- ( x e. { ( # ` A ) } -> x = ( # ` A ) ) |
|
| 65 | 64 | fveq2d | |- ( x e. { ( # ` A ) } -> ( ( A ++ <" B "> ) ` x ) = ( ( A ++ <" B "> ) ` ( # ` A ) ) ) |
| 66 | 64 | fveq2d | |- ( x e. { ( # ` A ) } -> ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` ( # ` A ) ) ) |
| 67 | 65 66 | eqeq12d | |- ( x e. { ( # ` A ) } -> ( ( ( A ++ <" B "> ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) <-> ( ( A ++ <" B "> ) ` ( # ` A ) ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` ( # ` A ) ) ) ) |
| 68 | 63 67 | syl5ibrcom | |- ( ( A e. Word X /\ B e. X ) -> ( x e. { ( # ` A ) } -> ( ( A ++ <" B "> ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) ) ) |
| 69 | 68 | imp | |- ( ( ( A e. Word X /\ B e. X ) /\ x e. { ( # ` A ) } ) -> ( ( A ++ <" B "> ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) ) |
| 70 | 37 69 | jaodan | |- ( ( ( A e. Word X /\ B e. X ) /\ ( x e. ( 0 ..^ ( # ` A ) ) \/ x e. { ( # ` A ) } ) ) -> ( ( A ++ <" B "> ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) ) |
| 71 | 27 70 | sylan2b | |- ( ( ( A e. Word X /\ B e. X ) /\ x e. ( ( 0 ..^ ( # ` A ) ) u. { ( # ` A ) } ) ) -> ( ( A ++ <" B "> ) ` x ) = ( ( A u. { <. ( # ` A ) , B >. } ) ` x ) ) |
| 72 | 15 26 71 | eqfnfvd | |- ( ( A e. Word X /\ B e. X ) -> ( A ++ <" B "> ) = ( A u. { <. ( # ` A ) , B >. } ) ) |