This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsng | |- ( ( A e. C /\ B e. D ) -> ( F : { A } --> { B } <-> F = { <. A , B >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | |- ( a = A -> { a } = { A } ) |
|
| 2 | 1 | feq2d | |- ( a = A -> ( F : { a } --> { b } <-> F : { A } --> { b } ) ) |
| 3 | opeq1 | |- ( a = A -> <. a , b >. = <. A , b >. ) |
|
| 4 | 3 | sneqd | |- ( a = A -> { <. a , b >. } = { <. A , b >. } ) |
| 5 | 4 | eqeq2d | |- ( a = A -> ( F = { <. a , b >. } <-> F = { <. A , b >. } ) ) |
| 6 | 2 5 | bibi12d | |- ( a = A -> ( ( F : { a } --> { b } <-> F = { <. a , b >. } ) <-> ( F : { A } --> { b } <-> F = { <. A , b >. } ) ) ) |
| 7 | sneq | |- ( b = B -> { b } = { B } ) |
|
| 8 | 7 | feq3d | |- ( b = B -> ( F : { A } --> { b } <-> F : { A } --> { B } ) ) |
| 9 | opeq2 | |- ( b = B -> <. A , b >. = <. A , B >. ) |
|
| 10 | 9 | sneqd | |- ( b = B -> { <. A , b >. } = { <. A , B >. } ) |
| 11 | 10 | eqeq2d | |- ( b = B -> ( F = { <. A , b >. } <-> F = { <. A , B >. } ) ) |
| 12 | 8 11 | bibi12d | |- ( b = B -> ( ( F : { A } --> { b } <-> F = { <. A , b >. } ) <-> ( F : { A } --> { B } <-> F = { <. A , B >. } ) ) ) |
| 13 | vex | |- a e. _V |
|
| 14 | vex | |- b e. _V |
|
| 15 | 13 14 | fsn | |- ( F : { a } --> { b } <-> F = { <. a , b >. } ) |
| 16 | 6 12 15 | vtocl2g | |- ( ( A e. C /\ B e. D ) -> ( F : { A } --> { B } <-> F = { <. A , B >. } ) ) |