This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fun | |- ( ( ( F : A --> C /\ G : B --> D ) /\ ( A i^i B ) = (/) ) -> ( F u. G ) : ( A u. B ) --> ( C u. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnun | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A i^i B ) = (/) ) -> ( F u. G ) Fn ( A u. B ) ) |
|
| 2 | 1 | expcom | |- ( ( A i^i B ) = (/) -> ( ( F Fn A /\ G Fn B ) -> ( F u. G ) Fn ( A u. B ) ) ) |
| 3 | rnun | |- ran ( F u. G ) = ( ran F u. ran G ) |
|
| 4 | unss12 | |- ( ( ran F C_ C /\ ran G C_ D ) -> ( ran F u. ran G ) C_ ( C u. D ) ) |
|
| 5 | 3 4 | eqsstrid | |- ( ( ran F C_ C /\ ran G C_ D ) -> ran ( F u. G ) C_ ( C u. D ) ) |
| 6 | 2 5 | anim12d1 | |- ( ( A i^i B ) = (/) -> ( ( ( F Fn A /\ G Fn B ) /\ ( ran F C_ C /\ ran G C_ D ) ) -> ( ( F u. G ) Fn ( A u. B ) /\ ran ( F u. G ) C_ ( C u. D ) ) ) ) |
| 7 | df-f | |- ( F : A --> C <-> ( F Fn A /\ ran F C_ C ) ) |
|
| 8 | df-f | |- ( G : B --> D <-> ( G Fn B /\ ran G C_ D ) ) |
|
| 9 | 7 8 | anbi12i | |- ( ( F : A --> C /\ G : B --> D ) <-> ( ( F Fn A /\ ran F C_ C ) /\ ( G Fn B /\ ran G C_ D ) ) ) |
| 10 | an4 | |- ( ( ( F Fn A /\ ran F C_ C ) /\ ( G Fn B /\ ran G C_ D ) ) <-> ( ( F Fn A /\ G Fn B ) /\ ( ran F C_ C /\ ran G C_ D ) ) ) |
|
| 11 | 9 10 | bitri | |- ( ( F : A --> C /\ G : B --> D ) <-> ( ( F Fn A /\ G Fn B ) /\ ( ran F C_ C /\ ran G C_ D ) ) ) |
| 12 | df-f | |- ( ( F u. G ) : ( A u. B ) --> ( C u. D ) <-> ( ( F u. G ) Fn ( A u. B ) /\ ran ( F u. G ) C_ ( C u. D ) ) ) |
|
| 13 | 6 11 12 | 3imtr4g | |- ( ( A i^i B ) = (/) -> ( ( F : A --> C /\ G : B --> D ) -> ( F u. G ) : ( A u. B ) --> ( C u. D ) ) ) |
| 14 | 13 | impcom | |- ( ( ( F : A --> C /\ G : B --> D ) /\ ( A i^i B ) = (/) ) -> ( F u. G ) : ( A u. B ) --> ( C u. D ) ) |