This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An index-aware recursive definition defines a function on the natural numbers. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqom.a | |- G = seqom ( F , I ) |
|
| Assertion | fnseqom | |- G Fn _om |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqom.a | |- G = seqom ( F , I ) |
|
| 2 | seqomlem0 | |- rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) = rec ( ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) , <. (/) , ( _I ` I ) >. ) |
|
| 3 | 2 | seqomlem2 | |- ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) Fn _om |
| 4 | df-seqom | |- seqom ( F , I ) = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) |
|
| 5 | 1 4 | eqtri | |- G = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) |
| 6 | 5 | fneq1i | |- ( G Fn _om <-> ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) Fn _om ) |
| 7 | 3 6 | mpbir | |- G Fn _om |