This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an index-aware recursive definition at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqom.a | |- G = seqom ( F , I ) |
|
| Assertion | seqomsuc | |- ( A e. _om -> ( G ` suc A ) = ( A F ( G ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqom.a | |- G = seqom ( F , I ) |
|
| 2 | seqomlem0 | |- rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) = rec ( ( c e. _om , d e. _V |-> <. suc c , ( c F d ) >. ) , <. (/) , ( _I ` I ) >. ) |
|
| 3 | 2 | seqomlem4 | |- ( A e. _om -> ( ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) ` suc A ) = ( A F ( ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) ` A ) ) ) |
| 4 | df-seqom | |- seqom ( F , I ) = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) |
|
| 5 | 1 4 | eqtri | |- G = ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) |
| 6 | 5 | fveq1i | |- ( G ` suc A ) = ( ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) ` suc A ) |
| 7 | 5 | fveq1i | |- ( G ` A ) = ( ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) ` A ) |
| 8 | 7 | oveq2i | |- ( A F ( G ` A ) ) = ( A F ( ( rec ( ( a e. _om , b e. _V |-> <. suc a , ( a F b ) >. ) , <. (/) , ( _I ` I ) >. ) " _om ) ` A ) ) |
| 9 | 3 6 8 | 3eqtr4g | |- ( A e. _om -> ( G ` suc A ) = ( A F ( G ` A ) ) ) |