This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Parallel summation (Christmas Stocking) theorem for Pascal's Triangle. (Contributed by Paul Chapman, 18-May-2007) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcxmas | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑀 ) C 𝑀 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcxmaslem1 | ⊢ ( 𝑚 = 0 → ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = ( ( ( 𝑁 + 1 ) + 0 ) C 0 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑚 = 0 → ( 0 ... 𝑚 ) = ( 0 ... 0 ) ) | |
| 3 | 2 | sumeq1d | ⊢ ( 𝑚 = 0 → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = Σ 𝑗 ∈ ( 0 ... 0 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
| 4 | 1 3 | eqeq12d | ⊢ ( 𝑚 = 0 → ( ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ↔ ( ( ( 𝑁 + 1 ) + 0 ) C 0 ) = Σ 𝑗 ∈ ( 0 ... 0 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) ) |
| 5 | bcxmaslem1 | ⊢ ( 𝑚 = 𝑘 → ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ) | |
| 6 | oveq2 | ⊢ ( 𝑚 = 𝑘 → ( 0 ... 𝑚 ) = ( 0 ... 𝑘 ) ) | |
| 7 | 6 | sumeq1d | ⊢ ( 𝑚 = 𝑘 → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
| 8 | 5 7 | eqeq12d | ⊢ ( 𝑚 = 𝑘 → ( ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ↔ ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) ) |
| 9 | bcxmaslem1 | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = ( ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) | |
| 10 | oveq2 | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 0 ... 𝑚 ) = ( 0 ... ( 𝑘 + 1 ) ) ) | |
| 11 | 10 | sumeq1d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = Σ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ↔ ( ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) ) |
| 13 | bcxmaslem1 | ⊢ ( 𝑚 = 𝑀 → ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = ( ( ( 𝑁 + 1 ) + 𝑀 ) C 𝑀 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑚 = 𝑀 → ( 0 ... 𝑚 ) = ( 0 ... 𝑀 ) ) | |
| 15 | 14 | sumeq1d | ⊢ ( 𝑚 = 𝑀 → Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑚 = 𝑀 → ( ( ( ( 𝑁 + 1 ) + 𝑚 ) C 𝑚 ) = Σ 𝑗 ∈ ( 0 ... 𝑚 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ↔ ( ( ( 𝑁 + 1 ) + 𝑀 ) C 𝑀 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) ) |
| 17 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 18 | nn0addcl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( 𝑁 + 0 ) ∈ ℕ0 ) | |
| 19 | bcn0 | ⊢ ( ( 𝑁 + 0 ) ∈ ℕ0 → ( ( 𝑁 + 0 ) C 0 ) = 1 ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( ( 𝑁 + 0 ) C 0 ) = 1 ) |
| 21 | 17 20 | mpan2 | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 0 ) C 0 ) = 1 ) |
| 22 | 0z | ⊢ 0 ∈ ℤ | |
| 23 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 24 | 21 23 | eqeltrdi | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 0 ) C 0 ) ∈ ℕ0 ) |
| 25 | 24 | nn0cnd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 0 ) C 0 ) ∈ ℂ ) |
| 26 | bcxmaslem1 | ⊢ ( 𝑗 = 0 → ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( ( 𝑁 + 0 ) C 0 ) ) | |
| 27 | 26 | fsum1 | ⊢ ( ( 0 ∈ ℤ ∧ ( ( 𝑁 + 0 ) C 0 ) ∈ ℂ ) → Σ 𝑗 ∈ ( 0 ... 0 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( ( 𝑁 + 0 ) C 0 ) ) |
| 28 | 22 25 27 | sylancr | ⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑗 ∈ ( 0 ... 0 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( ( 𝑁 + 0 ) C 0 ) ) |
| 29 | peano2nn0 | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) | |
| 30 | nn0addcl | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + 0 ) ∈ ℕ0 ) | |
| 31 | 29 17 30 | sylancl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) + 0 ) ∈ ℕ0 ) |
| 32 | bcn0 | ⊢ ( ( ( 𝑁 + 1 ) + 0 ) ∈ ℕ0 → ( ( ( 𝑁 + 1 ) + 0 ) C 0 ) = 1 ) | |
| 33 | 31 32 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) + 0 ) C 0 ) = 1 ) |
| 34 | 21 28 33 | 3eqtr4rd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 𝑁 + 1 ) + 0 ) C 0 ) = Σ 𝑗 ∈ ( 0 ... 0 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
| 35 | simpr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 36 | elnn0uz | ⊢ ( 𝑘 ∈ ℕ0 ↔ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 37 | 35 36 | sylib | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
| 38 | simpl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 39 | elfznn0 | ⊢ ( 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) → 𝑗 ∈ ℕ0 ) | |
| 40 | nn0addcl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑁 + 𝑗 ) ∈ ℕ0 ) | |
| 41 | 38 39 40 | syl2an | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ) → ( 𝑁 + 𝑗 ) ∈ ℕ0 ) |
| 42 | elfzelz | ⊢ ( 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) → 𝑗 ∈ ℤ ) | |
| 43 | 42 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ) → 𝑗 ∈ ℤ ) |
| 44 | bccl | ⊢ ( ( ( 𝑁 + 𝑗 ) ∈ ℕ0 ∧ 𝑗 ∈ ℤ ) → ( ( 𝑁 + 𝑗 ) C 𝑗 ) ∈ ℕ0 ) | |
| 45 | 41 43 44 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ) → ( ( 𝑁 + 𝑗 ) C 𝑗 ) ∈ ℕ0 ) |
| 46 | 45 | nn0cnd | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ) → ( ( 𝑁 + 𝑗 ) C 𝑗 ) ∈ ℂ ) |
| 47 | bcxmaslem1 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( ( 𝑁 + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) | |
| 48 | 37 46 47 | fsump1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( 𝑁 + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) ) |
| 49 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 50 | 49 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 51 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 52 | 51 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 53 | 1cnd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℂ ) | |
| 54 | add32r | ⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑁 + ( 𝑘 + 1 ) ) = ( ( 𝑁 + 1 ) + 𝑘 ) ) | |
| 55 | 50 52 53 54 | syl3anc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 + ( 𝑘 + 1 ) ) = ( ( 𝑁 + 1 ) + 𝑘 ) ) |
| 56 | 55 | oveq1d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) = ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) |
| 57 | 56 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( 𝑁 + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) ) |
| 58 | 48 57 | eqtrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) → Σ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) ) |
| 60 | oveq1 | ⊢ ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) ) | |
| 61 | 60 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) ) |
| 62 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 63 | pncan | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) | |
| 64 | 52 62 63 | sylancl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 65 | 64 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( ( 𝑘 + 1 ) − 1 ) ) = ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ) |
| 66 | 65 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ) ) |
| 67 | nn0addcl | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ0 ) | |
| 68 | 29 67 | sylan | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ0 ) |
| 69 | nn0p1nn | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 70 | 69 | adantl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 71 | 70 | nnzd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 72 | bcpasc | ⊢ ( ( ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ0 ∧ ( 𝑘 + 1 ) ∈ ℤ ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( ( ( 𝑁 + 1 ) + 𝑘 ) + 1 ) C ( 𝑘 + 1 ) ) ) | |
| 73 | 68 71 72 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( ( ( 𝑁 + 1 ) + 𝑘 ) + 1 ) C ( 𝑘 + 1 ) ) ) |
| 74 | 66 73 | eqtr3d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ) = ( ( ( ( 𝑁 + 1 ) + 𝑘 ) + 1 ) C ( 𝑘 + 1 ) ) ) |
| 75 | nn0p1nn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 76 | nnnn0addcl | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ ) | |
| 77 | 75 76 | sylan | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ ) |
| 78 | 77 | nnnn0d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ0 ) |
| 79 | bccl | ⊢ ( ( ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ0 ∧ ( 𝑘 + 1 ) ∈ ℤ ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ∈ ℕ0 ) | |
| 80 | 78 71 79 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ∈ ℕ0 ) |
| 81 | 80 | nn0cnd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 82 | nn0z | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) | |
| 83 | 82 | adantl | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℤ ) |
| 84 | bccl | ⊢ ( ( ( ( 𝑁 + 1 ) + 𝑘 ) ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ∈ ℕ0 ) | |
| 85 | 67 83 84 | syl2anc | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ∈ ℕ0 ) |
| 86 | 29 85 | sylan | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ∈ ℕ0 ) |
| 87 | 86 | nn0cnd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ∈ ℂ ) |
| 88 | 81 87 | addcomd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) ) = ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) ) |
| 89 | peano2cn | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 + 1 ) ∈ ℂ ) | |
| 90 | 49 89 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℂ ) |
| 91 | 90 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℂ ) |
| 92 | 91 52 53 | addassd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑘 ) + 1 ) = ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) ) |
| 93 | 92 | oveq1d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) + 1 ) C ( 𝑘 + 1 ) ) = ( ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) |
| 94 | 74 88 93 | 3eqtr3d | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) = ( ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) |
| 95 | 94 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) → ( ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) + ( ( ( 𝑁 + 1 ) + 𝑘 ) C ( 𝑘 + 1 ) ) ) = ( ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) ) |
| 96 | 59 61 95 | 3eqtr2rd | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) ∧ ( ( ( 𝑁 + 1 ) + 𝑘 ) C 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) → ( ( ( 𝑁 + 1 ) + ( 𝑘 + 1 ) ) C ( 𝑘 + 1 ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑘 + 1 ) ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |
| 97 | 4 8 12 16 34 96 | nn0indd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( ( 𝑁 + 1 ) + 𝑀 ) C 𝑀 ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( 𝑁 + 𝑗 ) C 𝑗 ) ) |