This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Mathematical Induction (inference schema) on nonnegative integers, a deduction version. (Contributed by Thierry Arnoux, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nn0indd.1 | |- ( x = 0 -> ( ps <-> ch ) ) |
|
| nn0indd.2 | |- ( x = y -> ( ps <-> th ) ) |
||
| nn0indd.3 | |- ( x = ( y + 1 ) -> ( ps <-> ta ) ) |
||
| nn0indd.4 | |- ( x = A -> ( ps <-> et ) ) |
||
| nn0indd.5 | |- ( ph -> ch ) |
||
| nn0indd.6 | |- ( ( ( ph /\ y e. NN0 ) /\ th ) -> ta ) |
||
| Assertion | nn0indd | |- ( ( ph /\ A e. NN0 ) -> et ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0indd.1 | |- ( x = 0 -> ( ps <-> ch ) ) |
|
| 2 | nn0indd.2 | |- ( x = y -> ( ps <-> th ) ) |
|
| 3 | nn0indd.3 | |- ( x = ( y + 1 ) -> ( ps <-> ta ) ) |
|
| 4 | nn0indd.4 | |- ( x = A -> ( ps <-> et ) ) |
|
| 5 | nn0indd.5 | |- ( ph -> ch ) |
|
| 6 | nn0indd.6 | |- ( ( ( ph /\ y e. NN0 ) /\ th ) -> ta ) |
|
| 7 | 1 | imbi2d | |- ( x = 0 -> ( ( ph -> ps ) <-> ( ph -> ch ) ) ) |
| 8 | 2 | imbi2d | |- ( x = y -> ( ( ph -> ps ) <-> ( ph -> th ) ) ) |
| 9 | 3 | imbi2d | |- ( x = ( y + 1 ) -> ( ( ph -> ps ) <-> ( ph -> ta ) ) ) |
| 10 | 4 | imbi2d | |- ( x = A -> ( ( ph -> ps ) <-> ( ph -> et ) ) ) |
| 11 | 6 | ex | |- ( ( ph /\ y e. NN0 ) -> ( th -> ta ) ) |
| 12 | 11 | expcom | |- ( y e. NN0 -> ( ph -> ( th -> ta ) ) ) |
| 13 | 12 | a2d | |- ( y e. NN0 -> ( ( ph -> th ) -> ( ph -> ta ) ) ) |
| 14 | 7 8 9 10 5 13 | nn0ind | |- ( A e. NN0 -> ( ph -> et ) ) |
| 15 | 14 | impcom | |- ( ( ph /\ A e. NN0 ) -> et ) |